
A Neural Collaborative Filtering Model with
Interaction-based Neighborhood

Ting Bai1,2, Ji-Rong Wen1,2, Jun Zhang1,2, Wayne Xin Zhao1,2,*
1School of Information, Renmin University of China

2Beijing Key Laboratory of Big Data Management and Analysis Methods
{baiting,zhangjun}@ruc.edu.cn,{jirong.wen,batmanfly}@gmail.com

ABSTRACT
Recently, deep neural networks have been widely applied to recom-
mender systems. A representative work is to utilize deep learning for
modeling complex user-item interactions. However, similar to tradi-
tional latent factor models by factorizing user-item interactions, they
tend to be ineffective to capture localized information. Localized
information, such as neighborhood, is important to recommender
systems in complementing the user-item interaction data. Based on
this consideration, we propose a novel Neighborhood-based Neural
Collaborative Filtering model (NNCF). To the best of our knowledge,
it is the first time that the neighborhood information is integrated into
the neural collaborative filtering methods. Extensive experiments on
three real-world datasets demonstrate the effectiveness of our model
for the implicit recommendation task.

KEYWORDS
recommender systems, deep neural network, neighborhood informa-
tion

1 INTRODUCTION
Due to the explosive growth of information, recommender system-
s have become increasingly important in various online services.
There are two mainstream approaches to recommender systems,
namely memory-based and model-based approaches. As the most
typical model-based recommendation approach, Matrix Factoriza-
tion (MF) represents users and items in a shared latent space, and
reconstructs the user-item interaction using their latent vectors. A
major problem of MF is that it adopts a simple linear factorization,
which may not be sufficient to model the complex user-item inter-
actions. To overcome this limitation, some pioneering studies apply
deep learning techniques to recommender systems, including neu-
ral rating prediction [7], auto-encoder based recommender [9] and
neural collaborative filtering [3]. These works mainly utilize deep
learning techniques as a powerful data model, in which complex
user-item interactions and auxiliary information can be modeled.
However, they also inherit a noteworthy weakness from previous

* Corresponding Author.
Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.
CIKM’17 , November 6–10, 2017, Singapore, Singapore
© 2017 Association for Computing Machinery.
ACM ISBN 978-1-4503-4918-5/17/11. . . $15.00
https://doi.org/10.1145/3132847.3133083

latent factor models which directly factorize user-item interactions
(e.g., MF): it is poor at identifying strong associations among a small
set of closely related items [4], especially when data is highly sparse.

Based on this consideration, the aim of this paper is to retain the
capacity of neural network models in learning an arbitrary user-item
interaction function, and meanwhile enhance its ability to leverage
localized information in complementing the interaction data. To
fulfill this purpose, we have to address two challenging issues: (1)
what kind of localized information should be used and (2) how to
model such localized information in a deep learning recommenda-
tion model. For the first issue, previous methods typically utilize the
neighborhood information, e.g., the classic ItemKNN algorithms.
The neural network model [3] simultaneously captures the two-way
information of user-item interaction, while the neighbors derived
from previous 𝐾 Nearest Neighbors (KNN) algorithms are based
on single-way relation, either user-user or item-item relation. Such
neighborhood information may not be in the best form to fit into
the interaction-based neural model. For solving the first issue, we
propose to identify the two-way neighbors based on the interaction
network. Unlike KNN algorithms, we characterize the neighborhood
information based on user-item interactions. We construct the neigh-
borhood by using a community-based algorithm, which selects direct
or community neighbors in a localized group of both users and items.
For solving the second issue, we set an integration component by
incorporating both interaction and neighborhood information. By
combining the two parts, our model jointly characterizes both inter-
action and neighborhood information in a unified neural network
model.

Our contributions are summarized as follows: (1) We propose a
model which can integrate neighborhood information into neural
collaborative filtering for recommendation; (2) We propose to con-
struct an interaction network which directly employs the interaction
information to obtain the interaction-based neighborhood. (3) Ex-
tensive experiments on three real-world datasets demonstrate the
effectiveness of our model for the implicit recommendation task.

2 PRELIMINARIES
In this section, we first present the problem statement. Then, we will
give the definitions for neighborhood and the construction algorithm,
which will be used in our recommendation model.

Problem statement. Assume that we have a set of users and items,
denoted by 𝒰 and ℐ respectively. Let 𝑢 ∈ 𝒰 denote a user and 𝑖 ∈ ℐ
denote an item, and 𝑦𝑢,𝑖 be the interaction label between 𝑢 and 𝑖.
Following [3], we use the general term of interaction to describe
various kinds of relationship between users and items in different
recommender systems, such as the purchase and play relationship
on e-commerce and video-sharing websites. A value of 1 for 𝑦𝑢,𝑖

https://doi.org/10.1145/3132847.3133083

...... 001111 11 11 00 00 00 11 0000 11 11 11

up
iq

,u i u iv p q

()N

up

Multi-Layer Perceptron

Concatenation

ReLU……

ˆ
uiy

uiyTraining

Log loss

Multi-Layer Perceptron

() ()

,

N N

u i u i v v v

ux iyun
in

()N

iq

()N

uv ()N

iv
Convolution+Max-pooling

sigmoid

Intergration
Component

Prediction
Component

Input Layer

Embedding

Intergration Layer

MLP

Output Layer

Embedding

Convolution+Max-pooling

Dense

Dense

Figure 1: Overview of the architecture of NNCF.

indicates that 𝑢 has interacted with 𝑖, and 0 otherwise. We call a
user-item pair ⟨𝑢, 𝑖⟩ an interaction pair when 𝑦𝑢,𝑖 = 1. Based on
the above notations, the recommendation task can be defined as a
prediction problem which aims to infer the value of the interaction
label 𝑦𝑢,𝑖 given an interaction pair ⟨𝑢, 𝑖⟩. Usually, such a prediction
problem can be reformulated as a ranking way: a true interaction
pair (with the label of 1) should be ranked in a higher position than
a false interaction pair (with the label of 0) in the recommendation
list.

Construction of the interaction-based neighborhood. An interac-
tion network is a bipartite graph formally defined as 𝒢 = (𝒱, ℰ),
where the vertex set 𝒱 consists of users and items vertices, i.e.,
𝒱 = 𝒰 ∪ ℐ, and the edge set ℰ consists of the two-way interaction
relations between users and items, and (𝑢, 𝑖) ∈ ℰ only if the interac-
tion label 𝑦𝑢,𝑖 = 1. The interaction-based neighborhood for users is
defined as a set of “associated” item vertices denoted by ℐ(𝑢) ⊂ ℐ.
The interaction-based neighborhood for items is constructed by the
same way.

A straightforward method to construct 𝒰 (𝑖) or ℐ(𝑢) is to collect all
the linked vertices (i.e., direct neighbors) in the interaction network
given a target vertex. However, such a method may not work well
when the degree of a vertex is either too large or too small. If the
vertex degree is too large, direct neighbors are likely to contain noise
due to occasional interactions; while the vertex degree is too small,
the current vertex cannot collect enough neighborhood information.
We further propose a community-based algorithm to organize the ver-
tices in the interaction network by communities. We use the Louvain
method proposed in [8] to optimize the modularity of the interaction
network with the partition parameter 𝛼. After community partition,
each vertex will be assigned to a unique community. For efficiency
consideration, only top 𝐾 ranked neighbors will be selected. If the
number of direct neighbors is less than 𝐾, we would add community
neighbors to fill up.

3 OUR NEIGHBORHOOD-BASED NEURAL
COLLABORATIVE FILTERING MODEL

Previously, deep neural model has been utilized to characterize user-
item interactions [3]. However, it cannot utilize the neighborhood
information, which has been shown to be effective to improve the
recommendation performance. In this paper, we present a unified
Neighborhood-based Neural Collaborative Filtering model (NNCF).
To give a global picture of our model, we present an illustrative figure

for the proposed model in Fig. 1. We first introduce the integration
component, which describes how to encode the user-item interaction
pair together with the neighborhood information, and then introduce
the prediction component based on Multi-Layer Perceptron (MLP).

3.1 Modeling Interaction and Neighborhood
Information

As the input, our model takes in two kinds of information, namely
user-item interaction and the neighborhood information. Now, we
describe how to encode these information in the integration compo-
nent.

Encoding the user-item pair. Formally, given a user-item pair
⟨𝑢, 𝑖⟩, we encode the involved user 𝑢 and item 𝑖 using the one-
hot representation, i.e., x𝑢 ∈ R|𝒰|×1 and y𝑖 ∈ R|ℐ|×1. In the
one-hot vector x𝑢 (or y𝑖), only the 𝑢-th entry (or the 𝑖-th entry) is
equal to 1. Similar to matrix factorization, two parameter matrices
P ∈ R𝐾1×|𝒰| and Q ∈ R𝐾1×|ℐ| consist of the latent factors for
users and items respectively. By applying a lookup layer, the one-hot
user or item vector will be transformed into a latent vector as below

p𝑢 = P⊤ · x𝑢, q𝑖 = Q⊤ · y𝑖, (1)

To effectively capture the overall structure of user-item interaction,
we follow the generalized MF method proposed in [3], and define
the interaction function 𝜑(p𝑢,q𝑖) as follows:

v𝑢,𝑖 = 𝜑(p𝑢,q𝑖) = p𝑢 ⊙ q𝑖, (2)

where “⊙” denotes the element-wise product of vectors. The inter-
action function 𝜑(p𝑢,q𝑖) applies a linear kernel to model the latent
features interactions.

Encoding the neighborhood information. To encode the neigh-
borhood information, we first code the neighbors using the one-hot
representation. For a user 𝑢, given the neighborhood set ℐ(𝑢) con-
sisting of item vertices, we represent it using a |ℐ|-dimensional
one-hot representation, denoted by n𝑢 ∈ R|ℐ|×1, only the entries
corresponding to 𝑢’s item neighbors will be set to 1. Similarly, the
neighborhood set 𝒰 (𝑖) of an item 𝑖 is represented as one-hot vector
n𝑖 ∈ R|𝒰|×1. Then we apply a concatenation-based lookup layer to
transform both one-hot vectors into latent vectors

p(𝑁)
𝑢 =CONCAT-LOOKUP(P′⊤,n𝑢), (3)

q
(𝑁)
𝑖 =CONCAT-LOOKUP(Q′⊤,n𝑖), (4)

where P′ ∈ R𝐾2×|ℐ| and Q′ ∈ R𝐾2×|𝒰| are the transformation
matrices for lookup (similar to P and Q). CONCAT-LOOKUP(·)
is a function which first performs the lookup operation to obtain
the corresponding embeddings for the input one-hot representation
vector, and then concatenates the multiple embeddings into a sin-
gle vector as the output. The numbers of neighbors for different
vertices are usually varying. To utilize such information, we have
to transform the varying-length vector into a fixed-length one. We
adopt the convolution operations on the latent vectors for neighbors,
i.e., p(𝑁)

𝑢 and q
(𝑁)
𝑖 . A convolution operation involves a filter which

is applied to a fixed window to produce a new feature. Each possible

window on the vector space produces a feature map. In order to re-
tain the most important information, we further apply a max-pooling
operation on the generated feature maps from convolution. Formally,
we obtain the representations for the neighborhood information as
follows

v(𝑁)
𝑢 =MP(CONV(p(𝑁)

𝑢)), (5)

v
(𝑁)
𝑖 =MP(CONV(q

(𝑁)
𝑖)), (6)

where v(𝑁)
𝑢 ∈ R𝐾3×1 and v

(𝑁)
𝑖 ∈ R𝐾3×1 denote the latent vectors

for the neighborhood of user 𝑢 and item 𝑖 respectively, and MP(·)
and CONV(·). denote the max-pooling and convolution operations
respectively.

Integrating interaction with neighborhood information. Once
we have obtained the representations for the user-item pair and its
neighborhood information, we further integrate these latent vectors
into a unified representation as below

̃︀v𝑢,𝑖 = v𝑢,𝑖 ⊕ v(𝑁)
𝑢 ⊕ v

(𝑁)
𝑖 , (7)

where “⊕” denotes the vector concatenation operation, v𝑢,𝑖 (defined
in Eq. 2) denotes the latent vector for the user-item pair ⟨𝑢, 𝑖⟩, v(𝑁)

𝑢

(defined in Eq. 5) denotes the latent vector for the neighborhood of
user 𝑢 and v

(𝑁)
𝑖 (defined in Eq. 6) denotes the latent vector for the

neighborhood of item 𝑖.

3.2 MLP-based Prediction
The interaction between a user and an item can be very complex. Pre-
vious approaches usually assume a linear relation by decomposing
the user-item matrix, e.g., standard matrix factorization. We would
like to endow our model a higher level of flexibility and nonlinear-
ity to better characterize the interaction with the incorporation of
neighborhood information. Hence, we propose to apply the MLP to
model the user-item interactions. Generally, a MLP component can
be constructed layer by layer. For 𝑗 = 1, ..., 𝐿, we can have

z𝑗 =𝑓 (𝑗)(z𝑗−1), (8)

𝑝𝑢,𝑖 =𝜎(w⊤ · z𝐿), (9)

where 𝑓 (𝑗)(·) is the non-linear activation function for the 𝑗-th layer.
We choose Rectifier Linear Unit (ReLU) as the activation function,
which performs the best in our experiments. To feed the MLP, we set
z0 = ̃︀v𝑢,𝑖 (defined in Eq. 7). For the output layer, w is the weights
and 𝜎(·) is the sigmoid function defined as 𝜎(𝑥) = 1

1+exp(−𝑥)
. 𝑝𝑢,𝑖

is the conditional probability of the interaction label being 1.

The loss function for optimization. Given a training set 𝒯 = {<
𝑢, 𝑖, 𝑦𝑢,𝑖 >}, we adopt the cross-entropy loss as the optimization
objective

ℒ = −
∑︁

<𝑢,𝑖,𝑦𝑢,𝑖>∈𝒯

(𝑦𝑢,𝑖 · log 𝑝𝑢,𝑖 + (1− 𝑦𝑢,𝑖) · log(1− 𝑝𝑢,𝑖)),

(10)
where 𝑝𝑢,𝑖 is the conditional probability defined in Eq. 9. Note that
our task is implicit recommendation, and we do not have explicit

Table 1: Statistics of the evaluation datasets.

Datasets #Interaction # Users #Items Sparsity
Delicious 437,593 1,867 69,223 99.66%

MovieLens 1,000,209 3,706 6,040 95.53%
Rossmann 1,017,209 4,086 1,115 77.67%

negative cases in training datasets. Following [3], we randomly
sample four items that a user does not interact with as negative cases.
To optimize the parameters for our model, we adopt the Stochastic
Gradient Descent (SGD). The loss function in Eq. 10 is optimized
by performing mini-batch Adam with a batch size of 1024, and the
learning rate is set to 0.001. We implement our models in PYTHON

using the library KERAS. We report the detailed parameter settings
of our model below. The embedding size is set to 32 in the input
layer, the number of kernels is set to 128 with a kernel size of 5 in
the convolutional layer, and the embedding size is set to 128 in the
last hidden layer. For all the nearest-neighbor methods, we select at
most 50 neighbors for efficiency consideration, i.e., 𝐾 = 50.

Our NNCF retains the capacity of MF to effectively estimate the
overall structure of user-item interaction, also utilizes neighborhood
information to detect strong associations among a small set of closely
related users and items. Moreover, the multi-layer perceptron endows
our model with a high level of nonlinearities which can learn an
arbitrary interaction function from data.

4 EXPERIMENTS

Dataset. We experiment with three real-world datasets from different
applications, namely Delicious [1], MovieLens [2], and Rossman-
n [6], which have been commonly adopted in recommendation tasks.
The statistics of the three datasets are summarized in Table 1.

Evaluation metrics. We adopt the widely used leave-one-out method
to perform the evaluation for recommendation [3, 4]. We randomly
sample 100 negative items that a user has not interacted with and
further combine the golden item (i.e., the one that the user has in-
teracted with) and the negative items into a randomly shuffled list.
A comparison method will rank the list and return the top 𝑘 ones
as recommendations. Following [3], we adopt Hit ratio at rank 𝑘
(HR@𝑘) and Normalized Discounted Cumulative Gain at rank 𝑘
(NDCG@𝑘) to evaluate the performance of a ranked list.

Methods to compare. We consider the following baselines for per-
formance comparisons. (1) ItemPop: It ranks the the items according
to their popularity measured by the number of interactions [6]; (2)
ItemKNN: It makes recommendations according to the similarities of
a candidate item to the past items [5]; (3) BPR: It optimizes the MF
model with a pairwise ranking loss [6]; (4) NeuMF: It is the recently
proposed neural network model for item recommendation [3].

It is noteworthy that our NNCF model itself is flexible to integrate
neighborhood derived from other methods. Here, we consider three
variants with different neighborhood construction algorithms, name-
ly NNCFknn , NNCFdirect , and NNCFcommunity (See Section 2).

Results and analysis. We present the results of HR@𝑘 and NDCG@𝑘
on the recommendation performance in Table 2. We only report the

Table 2: Performance comparisons of different methods on the recommendation task.

Datasets Delicious MovieLens Rossmann

Models HR@5 HR@10 NDCG@5 NDCG@10 HR@5 HR@10 NDCG@5 NDCG@10 HR@5 HR@10 NDCG@5 NDCG@10

ItemPop 0.0541 0.1044 0.0322 0.0483 0.3149 0.4503 0.2018 0.2524 0.0011 0.0027 0.0003 0.0008
ItemKNN 0.5969 0.6869 0.5590 0.6881 0.4501 0.6252 0.3014 0.3570 0.5836 0.6509 0.5150 0.5866

BPR 0.7377 0.7871 0.7411 0.8172 0.5103 0.6875 0.3621 0.4213 0.6175 0.6870 0.5640 0.6039
NeuMF 0.8553 0.8628 0.8068 0.8243 0.5655 0.7322 0.3830 0.4507 0.8496 0.9326 0.6566 0.6837

NNCF𝑘𝑛𝑛 0.8478 0.8681 0.8305 0.8337 0.6059 0.7421 0.4121 0.4750 0.8857 0.9450 0.7438 0.7652
NNCF𝑑𝑖𝑟𝑒𝑐𝑡 0.8597 0.8725 0.8323 0.8365 0.6146 0.7423 0.4160 0.4762 0.8757 0.9444 0.7390 0.7614

NNCF𝑐𝑜𝑚𝑚𝑢𝑛𝑖𝑡𝑦 0.8731 0.8832 0.8458 0.8490 0.6200 0.7441 0.4221 0.4766 0.8815 0.9503 0.7465 0.7691

results at top positions, i.e., 𝑘 = 5 and 𝑘 = 10. We can have the
following observations: (1) ItemPop is the weakest baseline, since
it is a non-personalized method. ItemKNN and BPR perform bet-
ter than ItemPop substantially. NeuMF is the best baseline, which
represents the state-of-art performance on the recommendation task
in the literature. (2) Our NNCF models perform better than all the
baselines consistently on the three datasets, especially with the met-
rics of NDCG@𝑘. This obversion demonstrates our proposed model
is more capable of generating high-quality recommendations at very
top positions. (3) By comparing the three NNCF variants, we can
observe that the variant NNCFcommunity gives the best performance
in almost all the cases except HR@5 on the Rossmann dataset. The
results indicate that the community-based algorithm is likely to
generate better neighborhood for recommendation.

Effect of the number of communities and hidden layers. We ex-
amine the effect of different communities and hidden layers on the
performance for our model. We only report the tuning results on the
Delicious dataset. All the findings are consistent on the other two
datasets and are omitted due to the space limitation. We vary the
partition parameter 𝛼 in {0.3, 0.4, 0.5, 0.6, 0.7}, which corresponds
to the number of communities in {353, 290, 250, 231, 204}. We
vary hidden layer 𝐿 from 0 to 5 with a step of 1. As shown in Fig. 2,
we can see that (1) when 𝛼 = 0.5, NNCF achieves the best perfor-
mance, which indicates that the number of communities should be
set neither too small nor too large; and (2) NNCF achieves the best
performance with four hidden layers, which is substantially better
than that without hidden layers by incorporating nonlinear trans-
formation. However, the optimal number of hidden layers should
depend on the amount of training data and specific tasks, and using
too many hidden layers might hinder the system performance.

5 CONCLUSION
This paper presented a novel neural network model NNCF, which
jointly characterized both user-item interactions and neighborhood
information for recommendation. To characterize neighborhood in-
formation, we proposed to use a community-based algorithm based
on the interaction network. Extensive experiments on three real-
world datasets demonstrated the effectiveness of our model with
interaction-based neighbors for the implicit recommendation task,
especially in the data sparsity situation. Our work presented the first
attempt to incorporate neighborhood information into the neural col-
laborative filtering. As future work, we will investigate other forms
to incorporate the neighborhood information. We will also extend the

(a) Varying 𝛼. (b) Varying the number of hidden layers.

Figure 2: Performance tuning with the varying of the communi-
ty partition parameter 𝛼 and numbers of hidden layers 𝐿.

current model to utilize other axillary information in recommender
systems, such as text and image.

ACKNOWLEDGMENTS
This work was partially supported by the National Natural Science
Foundation of China under Grant Nos. 61502502 and 61502501,
the National Basic Research 973 Program of China under Grant No.
2014CB340403 and the Beijing Natural Science Foundation under
Grant No. 4162032. Ting Bai was supported by the Outstanding
Innovative Talents Cultivation Funded Programs 2016 of Renmin
Univertity of China.

REFERENCES
[1] Ivn Cantador, Peter Brusilovsky, and Tsvi Kuflik. 2011. Second workshop on

information heterogeneity and fusion in recommender systems. In RecSys. 387–
389.

[2] F. Maxwell Harper and Joseph A. Konstan. 2016. The MovieLens Datasets:
History and Context. TiiS 5, 4 (2016), 1–19.

[3] Xiangnan He, Lizi Liao, Hanwang Zhang, Liqiang Nie, Xia Hu, and Tat-Seng
Chua. 2017. Neural Collaborative Filtering. In WWW. 173–182.

[4] Yehuda Koren. 2008. Factorization meets the neighborhood: a multifaceted
collaborative filtering model. In KDD. 426–434.

[5] Greg Linden, Brent Smith, and Jeremy York. 2003. Amazon.com Recommenda-
tions: Item-to-Item Collaborative Filtering. IEEE Internet Computing 7, 1 (2003),
76–80.

[6] Steffen Rendle, Christoph Freudenthaler, Zeno Gantner, and Lars Schmidt-Thieme.
2009. BPR: Bayesian Personalized Ranking from Implicit Feedback. In UAI.
452–461.

[7] Ruslan Salakhutdinov, Andriy Mnih, and Geoffrey E. Hinton. 2007. Restricted
Boltzmann machines for collaborative filtering. In ICML. 791–798.

[8] Vincent A. Traag. 2015. Faster unfolding of communities: speeding up the
Louvain algorithm. In CoRR.

[9] Hao Wang, Naiyan Wang, and Dit-Yan Yeung. 2015. Collaborative Deep Learning
for Recommender Systems. In KDD. 1235–1244.

	Abstract
	1 Introduction
	2 Preliminaries
	3 Our Neighborhood-based Neural Collaborative Filtering Model
	3.1 Modeling Interaction and Neighborhood Information
	3.2 MLP-based Prediction

	4 Experiments
	5 CONCLUSION
	Acknowledgments
	References

