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ABSTRACT

Next basket recommendation is a new type of recommen-
dation, which recommends a set of items, or a basket, to
the user. Purchase in basket is a common behavior of con-
sumers. Recently, deep neural networks have been applied
to model sequential transactions of baskets in next basket
recommendation. However, current methods do not track the
user’s evolving appetite for items explicitly, and they ignore
important item attributes such as product category. In this
paper, we propose a novel Attribute-aware Neural Attentive
Model (ANAM) to address these problems. ANAM adopts
an attention mechanism to explicitly model user’s evolving
appetite for items, and utilizes a hierarchical architecture
to incorporate the attribute information. In specific, ANAM
utilizes a recurrent neural network to model the user’s se-
quential behavior over time, and relays the user’s appetite
toward items and their attributes to next basket through
attention weights shared across baskets on the two different
hierarchies. Experiment results on two public datasets (i.e.,
Ta-Feng and JingDong) demonstrate the effectiveness of our
ANAM model for next basket recommendation.
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1 INTRODUCTION

Recommender systems provide great help for users to find
their desired items from a huge number of offers. Most studies
have focused on item recommendation, where each item is

* Corresponding Author.

Permission to make digital or hard copies of all or part of this work
for personal or classroom use is granted without fee provided that
copies are not made or distributed for profit or commercial advantage
and that copies bear this notice and the full citation on the first
page. Copyrights for components of this work owned by others than
ACM must be honored. Abstracting with credit is permitted. To copy
otherwise, or republish, to post on servers or to redistribute to lists,
requires prior specific permission and/or a fee. Request permissions
from permissions@acm.org.

SIGIR ’18, July 8–12, 2018, Ann Arbor, MI, USA

© 2018 Association for Computing Machinery.
ACM ISBN 978-1-4503-5657-2/18/07. . . $15.00
https://doi.org/10.1145/3209978.3210129

recommended separately. In most real scenarios, users often
purchase a basket of items at a visit of an online store. A
basket contains several items the user purchases together.
The next basket recommendation is to predict the next few
items that the user would likely buy. The key difference
with item recommendation is that items in a basket can be
dependent. For example, it is more likely that a user puts
bread and beer in the same basket than bread and wrenches.
Next basket recommendation is also different from session-
based recommendation because the order to put items in the
basket is not as important as in a session. The items that a
user would put in his basket are certainly dependent on the
general interests of the user, but are also dependent on the
items that the user has purchased in his previous baskets.
Both elements reflect the user’s appetite for items, which
often evolves over time.

Detecting the purchase appetite of users and their evo-
lution in time has been an active research topic in recent
years [1, 3–5]. Three main approaches have been proposed
to model the sequential behaviors of a user in next basket
recommendation, which are respectively based on: purchase
pattern, Markov Chains (MC) and Recurrent Neural Network
(RNN). Pattern-based method [1] considers the correlation
among items within the same basket, and incorporates differ-
ent product factors (e.g., co-occurrency, periodicity) into the
decision process. Factorizing Personalized Markov Chains (F-
PMC) [3] models both user’s sequential behavior and general
taste by conducting a tensor factorization over the transition
cube. Hierarchical Representation Model (HRM) [4] improves
FPMC by employing a two-layer architecture to construct
a no-linear hybrid aggregation of the user vector and the
transaction representation. Notice that these two MC-based
methods model the sequential behaviors of users only be-
tween adjacent transactions, which is insufficient to capture
the long-term trend of baskets. To address this problem, Dy-
namic REcurrent bAasket Model [5] (DREAM) adopts RNN
to model global sequential features which reflect interactions
among baskets, and uses the hidden state of RNN to represent
user’s dynamic interests over time.

However, the previous RNN methods ignore the attributes
of item, e.g., category and price, which are crucial in the user’s
purchase decision. For instance, if a user begins to purchase
some products for babies, he or she is more likely to purchase
other products in that category in the near future. Based on
the above observations, we propose an Attribute-aware Neural
Attentive Model (ANAM) for next basket recommendation.
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Instead of using the combined representation of item and its
attributes as the input of recommendation model, we propose
a novel hierarchical architecture to apply the independent
attention mechanism to items and attributes respectively.
Then we apply a joint learning function to combine users
varying appetite towards items and attributes. ANAM utilizes
an attentive RNN to model the user’s sequential behavior
over time, and relays the user’s appetite for items and their
attributes to next basket through attention weights shared
across baskets on the two different hierarchies.

Our contributions are summarized as follows: (1) We pro-
pose a hierarchical attentive architecture to explicitly model
the user’s appetite for any attributes of items (e.g., category);
(2) Using a joint learning function combining the attentive
information of items and attributes, our model is more effec-
tive to capture user’s varying appetite towards items; (3) We
demonstrate through two real-world datasets the effectiveness
of our model for the next basket recommendation task.

2 ATTRIBUTE-AWARE NEURAL
ATTENTIVE MODEL

2.1 Problem Statement

Assume that we have a set of users and items, denoted by 𝑈
and 𝐼 respectively. Let 𝑢 ∈ 𝑈 denote a user and 𝑖 ∈ 𝐼 denote
an item. The number of users and items is donated as |𝑈 | and
|𝐼| respectively. Given a user 𝑢, his or her purchase records
sorted by time is a sequence of baskets𝐵𝑢 = {𝐵𝑢

1 , 𝐵
𝑢
2 , ..., 𝐵

𝑢
𝑡 }.

𝑡 is the step of the sequence of baskets. 𝐵𝑢
𝑡 ⊆ 𝐼 consists of

a set of items. Each item 𝑖 has some attributes, such as the
category and price. Currently we use the category information
as item attributes, but our model could be easily extended
to characterize other attribute information. The attribute of
item 𝑖 is denoted as 𝑐𝑖 ∈ 𝐶, where 𝐶 is the set of categories.
The category information of items in basket 𝐵𝑢

𝑡 is denoted as
𝐶𝑡. Based on the above notations, given a user 𝑢’s purchase
history, the next basket recommendation task can be defined
as a prediction problem which aims to infer a set of items that
𝑢 would probably buy in the next basket. Such a prediction
problem can be reformulated as a ranking problem of all
items for each user. With the ranking list of all items, we
recommend top 𝐾 items to the user.

2.2 The Proposed Model

In this paper, we propose a unified Attribute-aware Neural
Attentive Model (ANAM) using the architecture shown
in Fig. 1. ANAM utilizes a hierarchical attentive RNN to
model the user’s sequential behavior over time, and relays
the user’s appetite for items and their attributes to next
basket through attention weights shared across baskets. In the
following, we first model the information of a basket: encoding
information of items and item attributes in each basket; and
learning the joint function to integrate the corresponding
attention weights of items and attributes. Then we model
user’s sequential behavior by RNN.

User

Softmax

 ...

 ...

 ...

 ...

Softmax Softmax

Figure 1: Overview of the architecture of ANAM

2.2.1 Encoding items and item attributes. For a basket
𝐵𝑢

𝑡 at step 𝑡, we represent the information of item set 𝐼𝑡
using a |𝐼|-dimensional one-hot representation, denoted by

e𝐼
𝑡 ∈ R|𝐼|×1, only the entry corresponding to item which

exists in basket 𝐵𝑢
𝑡 will be set to 1. The same for the set

of categories 𝐶𝑡, denoted by e𝐶
𝑡 ∈ R|𝐶|×1. Then we apply a

concatenation-based lookup layer to transform the one-hot
vectors of 𝐼𝑡 and 𝐶𝑡 into latent vectors

v𝐼
𝑡 =concat-lookup(P⊤, e𝐼

𝑡 ), (1)

v𝐶
𝑡 =concat-lookup(Q⊤, e𝐶

𝑡 ), (2)

where P ∈ R𝐷×|𝐼| and Q ∈ R𝐷×|𝐶| are the transformation
matrices for lookup and𝐷 is the embedding dimension of each
item and category. v𝐼

𝑡 ∈ R𝐷×|𝐼𝑡| and v𝐶
𝑡 ∈ R𝐷×|𝐶𝑡| are the

latent vector of items and item categories in basket 𝐵𝑢
𝑡 . |𝐼𝑡| is

the number of items in 𝐵𝑢
𝑡 and |𝐶𝑡| is the number of categories

in 𝐵𝑢
𝑡 . For each item 𝑖𝑡 ∈ 𝐼𝑡 , the corresponding embedding

vector is v𝑖
𝑡 ∈ R𝐷×1; and for each category 𝑐𝑡 ∈ 𝐶𝑡, it is

v𝑐
𝑡 ∈ R𝐷×1. Since the number of items in each basket changes,

we use a masked zero-padding value in the embedding layer
to convert each basket to a fixed-dimension of representation
vector.

2.2.2 Integrating attention weights. We employ attention
mechanism to capture user’s varying appetite toward items
and categories upon all baskets. For each item 𝑖 ∈ 𝐼 and
each category 𝑐 ∈ 𝐶, we assume user’s appetite for the
item and category is a𝑖 ∈ A𝐼 and a𝑐 ∈ A𝐶 respectively.
a𝑖 ∈ R𝐷×1 and a𝑐 ∈ R𝐷×1 are initialized randomly and
learned automatically as the training process over all baskets.
A𝐼 ∈ R|𝐼|×𝐷 and A𝐶 ∈ R|𝐶|×𝐷 are the attention matrices
of all items and categories (see Figure 1). For an item 𝑖 in
basket 𝐵𝑢

𝑡 , we obtain the attentive representation of 𝑖 by
ṽ𝑖
𝑡 = v𝑖

𝑡 ⊙ a𝑖, where “⊙” denotes the element-wise product
of vectors. Now we have the latent vector v𝐼

𝑡 of all items
(see Eq. 1) and v𝐶

𝑡 of all categories (see Eq. 2) in 𝐵𝑢
𝑡 , we

integrate attention weights with the latent vectors of items
and categories as follows

ṽ𝐼
𝑡 =v𝐼

𝑡 ⊙CONCAT(a𝑖|𝑖 ∈ 𝐼𝑡), (3)

ṽ𝐶
𝑡 =v𝐶

𝑡 ⊙CONCAT(c𝑖|𝑖 ∈ 𝐼𝑡), (4)

where “CONCAT” function concatenates the attentive vec-
tors of the items or categories in the basket.



Intuitively, higher attention to a category makes the prod-
uct in it more likely to be purchased. We adopt a joint learning
function by applying an element-wise product, which incor-
porates the attentive vectors of items and categories into a
unified vector v𝐵

𝑡 ∈ R𝐷×|𝐼𝑡| to represent the basket.

v𝐵
𝑡 = ṽ𝐼

𝑡 ⊙ ṽ𝐶
𝑡 . (5)

2.2.3 Modeling user’s sequential behavior. Given a sequen-
tial baskets records 𝐵𝑢 = {𝐵𝑢

1 , 𝐵
𝑢
2 , ..., 𝐵

𝑢
𝑡 } of a user 𝑢,

we obtain the basket representation v𝐵
𝑡 of 𝐵𝑢

𝑡 in Eq. 5.
The sequence of baskets of user 𝑢 can be represented as
v𝐵 = {v𝐵

1 ,v𝐵
2 , ...,v𝐵

𝑡 }. For a user 𝑢, we represent it us-
ing a |𝑈 |-dimensional one-hot representation, denoted by

e𝑢 ∈ R|𝑈|×1, only the entry corresponding to 𝑢 will be set to
1. Then we apply a lookup layer to transform the one-hot
vectors of 𝑢 into latent vectors

v𝑢 = lookup(W⊤, e𝑢), (6)

where W ∈ R𝐷×|𝑈| is the transformation matrices for lookup.
In order to model user’s sequential behavior, we adopt Long

Short-Term Memory (LSTM), which has proven effective at
modeling sequential data. The input of LSTM at step 𝑡
is v𝐵

𝑡 . The output of LSTM at step 𝑡 (i.e., hidden state) is
represented as vℎ

𝑡 ∈ R𝐷×1, and it is applied later to construct
our loss function.

2.3 The Loss Function for Optimization

For a user 𝑢 and his or her previous baskets 𝐵𝑢
1,𝑡, we define

the probability of an item 𝑖 being purchased in the next
basket 𝐵𝑢

𝑡+1 by softmax function

𝑝(𝑖 ∈ 𝐵𝑢
𝑡+1|𝑢,𝐵𝑢

1,𝑡) =
exp(v⊤

𝑖 · (v𝑢 ⊙ vℎ
𝑡 ))∑︀|𝐼|

𝑗=1 exp(v
⊤
𝑗 · (v𝑢 ⊙ vℎ

𝑡 ))
, (7)

where v𝑢 ∈ R𝐷×1 is the embedding vector of user 𝑢, and
vℎ
𝑡 ∈ R𝐷×1 is the hidden vector of LSTM at step 𝑡.
To effectively learn from the training data, we adopt a

weighted cross-entropy as the optimization objective at each
step of LSTM, which is defined as

𝐿 =
∑︁
𝑢∈𝑈

∑︁
𝐵𝑢

𝑡 ∈𝐵𝑢

∑︁
𝑖∈𝐼𝑡

(−𝑚·𝑦𝑖·log 𝑝𝑖−𝑛·(1−𝑦𝑖)·log(1−𝑝𝑖)), (8)

where 𝑝𝑖 is the probability of an item 𝑖 being purchased in
the next basket in our model. If item 𝑖 is purchased in the
the next basket, 𝑦𝑖 = 1, otherwise, 𝑦𝑖 = 0. 𝑚 and 𝑛 are the
weights of positive and negative instances (purchased or not
in the next basket). The reason of using different weights is
to cope the fact that there are usually much more negative
instances than positive instances in a dataset.

We take the last basket of each user as the testing data,
the penultimate basket as the validation set to optimize pa-
rameters, and the remaining baskets as the training data. We
implement our models in Python using the library Keras.
The loss function in Eq. 8 is optimized by Adam with a batch
size of 200 in Ta-Feng and 500 in JingDong datasets. Due
to the disparity of the amount of positive and negative in-
stances, we set 𝑚 500 times larger than 𝑛 in our experiments
to punish the error of mistaking the positive instances. The

Table 1: Statistics of the evaluation datasets.

Datasets # Users #Items # Transactions # Category

Ta-Feng 9,238 7,973 464,118 1,074

JingDong 4,832 3,283 41,932 165

learning rate is set to 0.001 and embedding size in the input
layer and the units in LSTM are set to 50 (i.e., 𝐷 = 50).

After training, given a user’s historical transaction records,
we can obtain the probability of each item 𝑖 being purchased
in the next basket according to Eq. 7. We than rank the
items according to their probability, and select top 𝐾 results
as the final recommended items to the user.

3 EXPERIMENTS

Dataset. We experiment with two real-world datasets, name-
ly Ta-Feng1 and JingDong. Ta-Feng dataset contains 4 month-
s (November 2000 to February 2001) of shopping transactions
of the Ta-Feng supermarket. JingDong dataset contains prod-
uct reviews records of users in 4 months (January 2012 to
April 2012), and is shared in [6]. The users having less than
10 and 25 purchases in Ta-Feng and JingDong are removed,
so are the items purchased less than 10 and 20 times. The
average number of baskets for a user in Ta-Feng and Jing-
Dong datasets is 8.4 and 8.7, and the average number of
products in each basket is 6.6 and 4.1. The statistics of the
two datasets are summarized in Table 1.

Evaluation metrics. Following [4, 5], we choose the top
𝐾 (i.e., 𝐾 = 5) items in the ranking list of all items as
the recommended set. To evaluate the performance of our
model, we adopt the widely used F1-score and Normalized
Discounted Cumulative Gain (NDCG).

Baseline methods compared. We consider the following
baselines for performance comparisons. (1) TOP : It ranks
the the items according to their popularity. (2) NMF [2]:
It is the state-of-the-art method in traditional model based
collaborative filtering methods. It uses nonnegative matrix
factorization on user-item matrix. For implementation, we
use the public code NMF: DTU Toolbox2. (3) FPMC [3]: It
learns a transition matrix based on underlying Markov chains.
It models the sequential behavior but only between adjacent
transactions. (4) HRM [4]: It employs neural network to im-
plement a nonlinear operation to integrate the representation
of users and item purchase history in last transactions. (5)
DREAM [5]: It incorporates both general customers’ pref-
erences and sequential information by using RNN. It is the
state-of-the-art method in next basket recommendation task.

Among all the above method, NMF does not model the
basket information. FPMC and HRM only use the sequence
information between two adjacent baskets. DREAM uses RN-
N to capture the global sequential information, but does not
use attention mechanism to effectively model the sequence

1
http://www.bigdatalab.ac.cn/benchmark/bm/dd?data=Ta-Feng

2
http://cogsys.imm.dtu.dk/toolbox/nmf/



information. Besides, all of the above methods do not con-
sider item attributes. Our ANAM employs a hierarchical
attentive architecture to apply attention mechanism to items
and attributes respectively, which can effectively model users’
varying appetite towards items. To empirically evaluate the
effectiveness of the attention mechanism and attribute infor-
mation respectively, we compare our ANAM with DREAM -
an RNN model without attention and attribute information,
and a degenerated Neural Attentive Model (NAM) - our
attentive RNN model without attribute information.

Results and analysis. We present the results of F1-score@5
and NDCG@5 on the next basket recommendation perfor-
mance in Table 2.

Table 2: Performance comparisons of different meth-
ods on the next basket recommendation task.

Datasets Ta-Feng JingDong

Models F1-score@5 NDCG@5 F1-score@5 NDCG@5

TOP 0.051 0.084 0.0066 0.0094

NMF 0.052 0.072 0.0069 0.0097
FPMC 0.059 0.087 0.0078 0.0099

HRM 0.062 0.089 0.0095 0.0174

DREAM 0.065 0.084 0.0122 0.0123
DREAM* 0.133 0.173 0.1046 0.1542

NAM 0.142* 0.187* 0.1283* 0.1826*

ANAM 0.146* 0.190* 0.1313* 0.1842*

Note: “ * ” indicates the statistically significant improvements
(i.e., two-tailed 𝑡-test with 𝑝 < 0.01 ) over the best baseline (i.e.,
DREAM*).

In our experiments, the embedding dimension in HRM
and DREAM is set to 50. For JingDong dataset, we set the
learning rate to 0.001 in Dream, 0.0003 in HRM and 0.001
in FPMC which yield the best results. For Ta-Feng, we use
the same training and testing data as HRM, so we report the
baseline results as in [4]. We re-implement the DREAM, and
modify the objective function as Eq. 8. This change leads
to a huge improvement of the original results in [5]. The
parameters of our modified DREAM (denoted as DREAM*)
are the same as in our ANAM model. We report the results
of DREAM* in Table 2.

We can make the following observations: (1) TOP is the
weakest baseline, since it is a non-personalized method. NM-
F performs better than TOP, but it does not consider any
sequential information of users. FPMC outperforms slightly
NMF by taking into account adjacent baskets. (2) HRM
further improves the effectiveness by using neural network.
This shows the ability of neural network to model complex
interactions between user’s general taste and their sequential
behavior. Compared with HRM, DREAM achieves better
effectiveness on F1-score@5 and NDCG@5 due to use of
whole sequential information. (3) DREAM*, which uses a
modified loss function, leads to a large boost in effectiveness.
This indicates the great importance to weigh the training
examples in the training process. (4) Our degenerated model
NAM consistently and significantly outperforms all baseline

methods, showing the effectiveness of our attentive mecha-
nism on item to capture user’s evolving appetite for items.
(5) ANAM performs better than NAM, This indicates the
contribution of the attribute information of item.

4 CONCLUSION

This paper presented a novel attribute-aware neural atten-
tive model for next basket recommendation, which utilizes a
hierarchical attentive architecture to integrate the attribute
information of items. ANAM effectively captures the user’s e-
volving appetite for the item by using a joint learning function
combining the attentive information of items and attributes.
Experimental results on two public datasets (i.e., Ta-Feng
and JingDong) demonstrated the effectiveness of our ANAM
model for next basket recommendation. This work shows the
necessity to model the baskets in the purchase history of a us-
er, and to incorporate the attribute information about items.
As future work, we will investigate more attributes of item
(e.g., price) and explore the effects of multiple factors on the
user’s purchase decision. This series of experiments confirms
the previous results that the sequential information about
baskets provides some useful information for next basket pre-
diction. The superior performance of our model shows that
attribute information can further boost the effectiveness.
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