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Abstract. Graph-based semi-supervised learning, utilizing both a few
labeled nodes and massive unlabeled nodes, has aroused extensive atten-
tion in the research community. However, for the graph with few labeled
nodes, the performance of Graph Convolutional Networks (GCNs) will
suffer from a catastrophic decline due to its intrinsic shallow architec-
ture limitation and insufficient supervision signals. To accommodate this
issue, we propose a novel Self-Training model (ST-LPGCN) which rein-
forces the pseudo label generation on the GCNs with Label Propagation
algorithm (LPA). By making full use of the advantages of GCNs in aggre-
gating the local node features and LPA in propagating the global label
information, our ST-LPGCN improves the generalization performance
of GCNs with few labeled nodes. Specifically, we design a pseudo label
generator to pick out the nodes assigned with the same pseudo labels
by GCN and LPA, and add them to the labeled data for the next self-
training process. To reduce the error propagation of labels, we optimize
the transition probability between nodes in LPA under the supervision of
the pseudo labels. The extensive experimental results on four real-world
datasets validate the superiority of ST-LPGCN for the node classification
task with few labeled nodes.

Keywords: Graph neural networks + Label propagation - Few labels -
Semi-supervised learning

1 Introduction

Recently, graph representation learning had been successfully applied into many
research areas, such as social networks [8], physical process [18], knowledge
graph [7], and biological networks [17]. However, due to the data privacy pol-
icy and the high cost of data annotation, the node labels on graphs are usu-
ally sparse in many real-world scenarios. To alleviate the lack of labeled data
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problem, graph-based semi-supervised learning (GSSL), which trains numerous
unlabeled data along with a small amount of labeled data, has attracted increas-
ing interests in the research community. And it had been successfully developed
in various approaches, such as label propagation [36], graph regularization [35],
graph autoencoder [13] and graph neural networks [8,14,25]. The success of
GSSL depends on the simple assumption that the nearby nodes on a graph tend
to have the same labels [21]. It spreads the labels of a few labeled nodes to the
remaining massive unlabeled nodes according to the adjacent relationship within
the graph to accurately classify the unlabeled nodes. The mainstream method
Graph Convolutional Networks (GCNs) learning representations of each node
by aggregating the information of its neighbors to facilitate the label assign-
ments, have been demonstrated to significantly outperform the other classic
GSSL methods [5,36].

Despite the noticeable progress of GCNs and the variants [9,14,31] in graph-
based semi-supervised learning tasks, it still faces adverse conditions when the
labeled data is extremely limited. The performance of GCNs would suffer from
a catastrophic decline when the labeled data in GSSL is minimal. GCNs itera-
tively update each node’s representation via aggregating the representations of
its neighbors, and assign pseudo labels to the unlabeled nodes in the training
process. GCNs with shallow architecture will restrict the efficient propagation of
label signals, but when GCNs is equipped with many convolutional layers, it will
suffer from the over-smoothing problem [15,30], resulting in the restriction of the
performance of GCNs in the case of few labels. Some previous studies [12,15,22]
expand the labeled data by assigning unlabeled nodes with pseudo labels or fur-
ther use the unsupervised cluster information. Although they reduce the error
information contained in pseudo labels, they can not effectively involve the global
structure information, and the limited label signals can not be efficiently prop-
agated to the entire graph.

To address this problem, we propose a novel Self-Training model (ST-
LPGCN) which reinforces the pseudo label generation on the GCNs with Label
Propagation algorithm (LPA), then generates pseudo labels to expand the train-
ing set (i.e., labeled nodes). In ST-LPGCN, we utilize GCNs to extract the node
features and local structure information and assign the unlabeled nodes with
pseudo labels. However, as described above, the shallow GCNs cannot propa-
gate the label information through the entire graph. We further use LPA to
spread the labels to the entire graph to reinforces the pseudo labels genera-
tion. By doing that, we not only solve the over smoothing problem of GCNs in
propagating labels from high-order neighbors, but also incorporate both local
and global semantic information, which is helpful to predict the pseudo labels
of nodes. Specifically, to reduce the error propagation of labels, we learn the
transition probability matrix in LPA under the supervision of the pseudo labels
to optimize the transition probability between nodes. Then we carefully design
a pseudo label generator to pick out the nodes assigned with the same pseudo
labels by GCN and LPA, and add them to the labeled data for the next self-

training process. Our contributions are summarized as follows:
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Fig.1. An overall framework of our proposed ST-LPGCN. ST-LPGCN consists of
three components: a GCN generates pseudo labels based on the embeddings learned
from node features and local structure; a LPA component assigns unlabeled nodes with
pseudo labels according to the global structure and label information; and the pseudo
label generation component picks nodes which assigned with the same pseudo labels
by GCN and LPA. The selected nodes are added to the labeled data for the next
self-training process.

— We propose a novel self-training algorithm for the semi-supervised node classi-
fication tasks called ST-LPGCN, which reinforces the pseudo label generation
on the GCNs with Label Propagation algorithm (LPA).

— To reduce the error propagation of labels, we optimize the transition proba-
bility between nodes in LPA under the supervision of the pseudo labels. The
nodes assigned with the same pseudo labels by GCN and LPA are added to
the labeled data for the next self-training process.

— We conduct extensive experiments on four benchmark graph datasets, and
the experimental results demonstrate that our proposed ST-LPGCN outper-
forms the state-of-the-art baselines, especially in the cases with extremely few
labeled data.

2 Related Works

Graph-Based Semi-supervised Learning. Graph-based semi-supervised
learning (GSSL) has attracted much attention in recent years due to the wide
range of applications, scalability to large-scale data, and promising performance.
The early GSSL methods are mainly based on the cluster assumption that the
nearby nodes on a graph tend to possess the same label. Researches along this
line mainly consist of label propagation [36] and its variants such as Gaussian
random fields [37], local and global consistence [34] and modified adsorption [23].
Another line is to predict the labels based on the embeddings learned from
input graphs [32], such as factorization-based methods [1,3] and random-walk-
based methods [5,24] which learn node embeddings based on the graph structure.
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However, these methods fail to leverage the rich node features, which are signifi-
cantly critical for GSSL. To jointly model the data features and graph structure,
autoencoder-based methods have been proposed including SDNE [27], GAE and
VGAE [13]. Later, with the introduction of GCN [14], the GNN-based methods
become the dominant solution. GNNs take advantage of message passing based
on the Laplacian smoothing assumption, in which messages are exchanged and
updated between each pair of the nodes and capture more facts to make a more
robust prediction on the unlabeled nodes. To improve the performance of GNNs
in the case of few labels, Li [15] combined GCNs and self-training to expand
supervision signals, M3S [22] proposed multi-stage self-training and utilized clus-
tering method to eliminate the pseudo labels that may be incorrect. CGCN [12]
further utilized an optimized graph clustering approach to strengthen the per-
formance.

Graph Convolutional Networks. Inspired by the success of convolutional
networks on grid-structure data, GCNs have been proposed to generalize the
CNNs to graph-structure data and achieved state-of-the-art performance in
many graph mining tasks. Generally, GCNs can be divided into spectral-based
and spatial-based methods. Spectral-based approaches define the graph convo-
lutions in the Fourier domain based on the graph signal processing. The gen-
eral graph convolution framework is first proposed by Bruna [2] which needs
to compute the Laplacian eigenvectors and then ChebyNet [4] using Chebyshev
polynomials to optimize this method. Afterwards, Kipf [14] utilized the local-
ized first-order approximation of spectral graph convolutions further simplified
this model. Furthermore, to overcome time-consuming computation on approxi-
mated Laplace eigenvalues, spatial approaches define convolutions directly on the
graph based on nodes’ spatial relations. The graph convolution is defined as the
weighted average function on the target node’s neighbors such as GraphSAGE [§]
and GAT [25]. Although GCNs and their variants have shown promising results,
the performance of most existing GCNs will suffer from a catastrophic decline
when the labeled data is limited. To address this problem, BGCN [33] incorpo-
rates a Bayesian method into GCN to get a more robust and generalized model
for node classification. LCGNN [29] directly uses label information to reconstruct
the aggregation matrix in GNNs to optimize the aggregation process. CG3 [26]
leverages contrastive learning and a hierarchical GCN model to capture nodes’
information from local to global perspectives to learn better representations for
the classification task.

Label Propagation Algorithm. Label propagation algorithm is a classic
graph-based semi-supervised learning method that regards the labeled nodes
as guides that lead the label information to propagate through the edges within
the graph to assign the unlabeled nodes with predicted labels. Gaussian random
fields [37] and local and global consistency [6] are the early typical work using
label propagation. With the proposal of GNNs, several researches try to incor-
porate GNNs and LPA because they are both based on the message passing
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model. TPN [16] uses GNNs generating soft labels and propagates them by
label propagation, GCN-LPA [28] uses the label propagation as the regulariza-
tion for parameter matrix in GCN. UniMP [20] incorporates label information to
the feature propagation process in GCN. Recent work Correct and Smooth [11]
notes that the key to improve the performance is using labels directly, utilizes
label propagation twice for correcting and smoothing and achieves performance
comparable to GCNs.

3 The Proposed Model

In this section, we introduce our Self-Training framework (ST-LPGCN) which
reinforces the pseudo label generation on the GCNs with Label Propagation
algorithm. The overall architecture is shown in Fig. 1. Before introducing the
ST-LPGCN, we provide the preliminary notations in this paper.

3.1 Preliminary Notations

Given a graph G = (V,&,X), where V = {v1, v, ...,v,} is the set of nodes, &
represents the set of edges. The feature vector of node v; is denoted as x; €
R4 and X = [x;;Xg;...;X,] € R"*? denotes the feature matrix of all nodes.
A € {0,1}"*™ denotes the adjacency matrix of the G, in which each entry A,;
represents the state of connection between node v; and v;. A;; = 1 indicates
that there exists an edge between v; and vj;; otherwise, A;; = 0. The label of a
node v; is represented as a one-hot vector y; € R'*¢, where C is the number
of classes. Given a node v;, our task is to predict the label of v;. If y;; = 1, the
label of node v; is j € C.

3.2 Generating Pseudo Labels with GCN

GCN is a widely used message passing model for semi-supervised node classifica-
tion. A GCN model usually contains multiple layers, and each layer aggregates
the first-order neighbors’ information and generate a low dimensional vector for
each node. The simple message passing process can be formulated as follows [33]:

HY = ¢(AXW©),

1
m+» — G(AH(l)W(l)), (1)
where A is the normalized adjacency matrix, defined asN]N)’lg. A is the adjacent
matrix with self-loops and D is the degree matrix of A. W) is the parameter
matrix at layer [ and H® is the output features matrix from layer [ — 1. ¢ is a
non-linear activation function.
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We adopted the vanilla GCN [14] with two convolutional layers in our paper,
formulated as:

Z = softmax(A(ReLU(AXW© )W), (2)

where W) € R and W) € R"*¢ are the parameter matrices, and h is the
dimension of the hidden layer. The non-linear activation function in first layer
is rectified linear unit (ReLU). Z € R™*¢ is a probability distribution, where
each row represents the probabilities that the node belongs to the corresponding
labels.

The GCN model is optimized by minimizing the cross-entropy loss function:

c
Egcn = - Z Z YicIn Zi07 (3)

i€l c=1

where L is the set of the labeled nodes and C' is the number of the labels.

The node is finally classified into the class with the maximal probability, and
the pseudo labels assigned by GCN is Z. Following [15], we select top-t confident
nodes in each class and assign the pseudo labels to them. Instead of adding them
to the labeled data directly, we feed the pseudo labels generated by GCN into
pseudo label generation component for further selection.

3.3 Generating Pseudo Labels with LPA

Traditional LPA. Label propagation algorithm (LPA) is a classic GSSL app-
roach, which propagates the node labels according to the similarity between
nodes. Given an initial label matrix Y(©), which consists of one-hot label indi-
cator vectors yi(o) for the few labeled nodes and zero vectors for the unlabeled
ones. The process of traditional LPA can be formulated as following:

YO Z DIAY®), )

where A and D are the adjacent matrix and its degree matrix respectively. The
labeled nodes propagate labels to their neighbors according to the normalized
adjacent matrix D'A, namely transition probability matrix. The greater the
similarity between each node and its neighbors, the greater the probability prop-
agated from the label of its neighbors.

However, in the above equation, the fixed transition probability of labels in
LPA will lead to the avalanche effect that the initial errors will be magnified with
the iterative process, which would have a catastrophic impact on the predictions.
In addition, the connection of nodes from different classes in the graph may be a
noise for LPA, which would further degrade the performance of LPA. To reduce
the error propagation of labels, we optimize the traditional LPA by making
the transition probability matrix learnable under the supervision of the pseudo
labels.
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Trainable LPA. To propagate the label information more correctly, we propose
a trainable LPA method to learn a optimized transition probability matrix where
the nodes in the same class connect more strongly, while the nodes from different
classes connect weakly. The trainable LPA can be formulated as:

YD) — ptAwW Ry (k) (5)

where W) € R"*" ig the parameter matrix at the k-th iteration. The trainable
LPA are optimized by cross-entropy loss function:

C
»Clpa = - Z Z YicIn Y;lcv (6)

i€l c=1

where the Y, is the predicted label by LPA.

In this way, the transition probability matrix can be corrected by the pseudo
labels, which alleviates the errors magnification problem in the iterative process.
We select top-t confident nodes in each class and assign the pseudo labels to
them. The same as the pseudo labels in GCN, we feed the pseudo labels gener-
ated by trainable LPA into the pseudo label generation component for further
selection.

Algorithm 1: ST-LPGCN Algorithm
Input: Adjacent matrix A, feature matrix X, label matrix Y, initial labeled
and unlabeled set Yo, Uop.

Output: Predicted labels for each unlabeled node

Random initialize the parameter matrices of GCN and trainable LPA;

for k=1,2,..., K do

Initial the pseudo-label sets chn = and Ylpa =0

Train GCN and LPA on the labeled set Yi_1 to obtain the predictions 7
and Y;

Sort nodes according to the confidence scores in the unlabeled set Ug_1;

for each class ¢ do

Select the top t nodes from 7 and 377 and add them to ng and f/lpa
respectively;

for each node do

W N =

N oo

if the label of node v are same in both }A/gcn and Ylpa then
10 Add it to the labeled data Yx_1 with pseudo label ¢;
11 Delete it from the unlabeled set Uy_1;

12 | Train the GCN and LPA on the new labeled data Yj;
13 Conduct label prediction based on the final trained GCN;
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3.4 Pseudo Label Generation

The core of self-training lies in the accuracy of pseudo labels assigned on the
nodes. It is important to generate reliable labels to avoid error propagation. In
this component, we use the pseudo labels from GCN and LPA components for
mutual checking. The GCN pseudo labels are generated based on the nodes’
feature similarities in the feature space. While the LPA pseudo labels are gener-
ated by using the label information and the global structure information, which
makes up for the limitations of the shallow GCN.

Specifically, given a node, we check their pseudo-labels generated in the GCN
and trainable LPA. If the labels are the same, we assign the label of the node to
the labeled data for the next self-training process; otherwise, we remove them to
diminish potential error information. Given a node v which had been generated
pseudo labels in GCN and LPA, the reliable pseudo label can be generated by:

Y pinar(v) = {01 Zgen(v) = Yipa(v)} (7)

where chn (v), Ylpa (v) denote the pseudo labels of node v generated by GCN
and LPA respectively. Y final (V) is the final pseudo label of v that will be added
to the labeled data for next self-training process.

3.5 Self-training Process

Following M3S [22], we repeat K times of the self-training process to provides
more supervision information from the learnable pseudo labels. The final loss
function to optimized is:

L= ﬁgcn + )\Elpaa (8)

where A is the trade-off hyper-parameter. The GCN and LPA component are
trained simultaneously (see in Algorithm 1).

4 Experiments

4.1 Experiment Setup

Datasets. The four widely used benchmark datasets are Cora, CiteSeer,
Pubmed [19] and ogbn-arxiv [10]. In these datasets, each node represents a doc-
ument and has a feature vector. The label of each node represents the topic that
it belongs to. The statistics of the datasets are shown in Table 1.

Baseline Methods. In the experiments, we compare our method with the
state-of-the-art semi-supervised node classification methods, including:

— LPA [36]: Label propagation is a classical semi-supervised learning algorithm.
It iteratively assigns labels to the unlabeled nodes by propagating the labels
through the graph.
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Table 1. Statistics of the datasets.

Dataset Nodes | Edges Classes | Features
CiteSeer 3,327 4,732 6 3,703
Cora 2,708 5429 7 1,433
PubMed 19,717 44,338 | 3 500
ogbn-arxiv | 169,343 | 1,166,243 | 40 128

— GCN [14]: GCN is a widely used graph neural network, and it learns node
representations based on the first-order approximation of spectral graph con-
volutions.

— GAT [25]: GAT leverages attention mechanism to improve the model perfor-
mance for node classification task.

— Union and Intersection [15]: Two methods Co-training and Self-
training are proposed in [15] for semi-supervised node classification. Co-
training uses ParWalk to select the most confident nodes and add their pseudo
labels to the labeled data to train GCN. While Self-Training selects the
pseudo node labels from GCN to boost the model performance. Union and
Intersection takes the union or intersection of the pseudo labels generated
by Co-training and Self-training as the additional supervision information.

— MB3S [22]: It leverages the deep cluster to check the pseudo labels assigned
by GCN and add to the labeled data for self-training on GCN.

— GCN-LPA [28]: It learns the optimal edge weights by LPA, which are lever-
aged as the regularization in GCN to separate different node classes.

— LCGNN [29]: The LCGCN and LCGAT use label information to reconstruct
the aggregation matrix based on the label-consistency for GCN and GAT,
which alleviate noise from connected nodes with different labels.

— BGCN [33]: It combines Bayesian approach with the GCN model, and views
the observed graph as a realization from a parametric family of random
graphs.

— CGCN [12]: It generates pseudo labels by combining variational graph auto-
encoder with Gaussian mixture models, which can be used to boost the per-
formance of semi-supervised learning.

— CG3 [26]: It leverages the contrastive learning on different views of graph
and captures the similarity and graph topology information to facilitate the
node classification task.

The above methods cover different kinds of approaches in graph-based semi-
supervised node classification task. LPA is a classic GSSL method that only
propagates the label signals to the entire graph directly. GCN and GAT are
the widely used GNN-based model which aggregates node features and local
structure. GCN-LPA, LCGNN and CG? further leverage the label information
or global structure information to improve the performance of GCNs. However,
they cannot be fully trained with few labeled nodes, which leads to the under-
performance. Self-Training model, M3S and CGCN all utilize the self-training
process based on the GCNs to expand the labeled data with pseudo labels.
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The most similar work to our method is M3S. It uses the unsupervised
method cluster to diminish the potential errors in pseudo label generation. The
differences between our model and M3S lie in: (1) M3S does not leverage the
global structure and label information of graph; (2) M3S needs more layers to
incorporate the useful features on GCN which is time-consuming and would
lead to the over-smoothing problem of GCN. Our ST-LPGCN leverages a LPA
to make full use of the global structure information and propagate the label
information to enrich the pseudo label signals. The trainable LPA enables ST-
LPGCN to alleviate the potential errors in label propagation simultaneously,
which would help to improve the accuracy of pseudo labels assigned on the
nodes in the self-training process.

Parameters Settings. We follow the experimental settings in M3S [22] for fair
comparation. We conducted experiments with different label rates, i.e., 0.5%, 1%,
2%, 3%, 4% on Cora and CiteSeer, 0.03%, 0.05%, 0.1% on PubMed and 1%, 2%,
5%, 10% on ogbn-arxiv dataset respectively. The layers of GCN is 3, 3, 2, 2
and the number of propagation times in LPA is 3 in Cora, CiteSeer, PubMed
and ogbn-arxiv datasets respectively in each self-training stage. For the top-t
most confident pseudo labels, ¢ is set to 60 in GCN and LPA in all datasets.
The times K repeated in self-training process are 3, 4, 5 in CiteSeer, PubMed
and ogbn-arxiv datasets. While for Cora dataset, it varies depending on the
label rates, which is set to 5, 4, 4, 2, 2. For each baseline method, grid search is
applied to find the optimal settings, and all the results are the mean accuracy
of 10 runs on all datasets. The hyperparameters of GCN are set as follows: the
learning rate is 0.002, dropout rate is 0.6, L2 regularization weight is 5 x 1074,
and the dimension of hidden layers in GCNs is 16. For other baseline methods,
we adopt their public code and tune hyperparameters for the best performance.
The trade-off hyperparameter A in Eq.8 is set to 1.

4.2 Result Analysis

We compute the accuracy of node classification task on different methods. The
results on four datasets with the different label rates are shown in the Table 2
and 3. For the baseline methods which are restricted by the memory size to
deal with the large-scale dataset ogbn-arxiv, comparisons are only carried out
on Cora, CiteSeer and Pubmed datasets. We have the following observations:

(1) LPA performs worst on CiteSeer and ogbn-arxiv datasets. Although it can
propagate the global label information through the entire graph to obtain
relatively strong supervision information, without the node feature infor-
mation, it can not achieve good performance due to the lack of using node
semantic information.

(2) GCN and GAT perform worst on Cora and PubMed datasets. They aggre-
gate the local node features and structure information, but they can not
provide sufficient supervision information for model training with few labels,
especially when the labeled data is extremely scarce.
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Table 2. Node classification accuracy on Cora.

Label rate | Cora CiteSeer PubMed

05% 1% 2% 3% 4% [0.5% 1% (2% |3% |4% |0.03% |0.05% | 0.1%
LPA 56.8 [62.0 |64.2 66.3 [69.6 |39.6 |42.2 44.0 |44.6 |45.1 |57.6 |62.0 |64.5
GCN 50.1 |60.3 1 69.8 |75.5 |76.7 |44.7 54.2 [62.3 |68.0 |69.5 |50.9 |58.2 |68.1
GAT 50.3 |61.2 |70.6 |76.4 |77.1 [45.3 56.4 |61.9 |69.6 |71.2 |52.1 |59.8 |70.4

Co-training | 55.1 |61.3 |70.1 |74.9 | 76.8 |45.6 |54.0 |59.6 |63.5 |64.8 |58.2 |65.7 |69.8
Self-training | 56.6 | 62.4 | 71.7 |76.8 | 77.1 |43.6 |57.5 |64.2 67.2 |68.5 |56.7 |65.5 |70.1
Union 57.0 167.6 |74.5 |77.1 |[78.7 |47.0 |159.3 |63.1 |65.9 66.2 |57.1 |65.2 |68.8
Intersection | 51.3 |63.2 | 71.1 |76.2 |77.3 [43.3 |60.4 |65.8 [69.8 |70.2 |56.0 |59.9 |68.0
GCN-LPA 525 [66.9 |72.0 |72.9 | 74.3 |42.1 |50.3 |59.4 |67.8 |69.0 63.6 |64.4 |69.5
BGCN 56.7 169.8 |74.8 | 76.9 |78.1 |52.0 | 58.6 |68.6 |70.8 |72.3 |63.4 |66.2 |70.2
M3S 61.5 |67.2 |75.6 |77.8 |78.0 |56.1 |62.1 |66.4 |70.3 |70.5 [59.2 |64.4 |70.6
LCGCN 69.7 | 73.4 |75.6 |79.1 [80.0 |61.1 |69.1 |70.3 |71.1 | 72.9 |68.8 |69.4 |75.9
LCGAT 70.9 |75.8 |77.1 |79.6 |81.3 |62.3 |68.9 |70.4 |71.3 |72.2 68.6 |69.0 |75.7
CGCN 64.3 | 72.4 |76.8 |79.8 |81.3 |59.3 |63.1 |69.5 724 |72.7 |64.7 |69.2 |77.8
caG? 69.3 | 74.1 |76.6 |79.9 |81.4 |62.7 |70.6 |70.9 |71.3 ' 72.5 |68.3 |70.1 |73.2

ST-LPGCN | 75.9 | 78.0|80.3 | 81.0 81.6 65.2|70.7|71.3 72.6|73.4|75.8 |77.6 |80.1

(3) The performance of Self-training, Co-Training, Union and Intersection is
not consistent through different datasets and label rates. The variant models
with self-training process achieve better performance, showing the usefulness
of leveraging the pseudo labels in model training.

(4) M3S and CGCN with self-training outperform the algorithm without self-
training such as GCN-LPA and BGCN on Cora, CiteSeer and PubMed
datasets, which also indicates that the self-training can provide more super-
vision information to improve the model performance. Besides, M3S and
CGCN utilize the clustering method to reduce the incorrect label infor-
mation, which leads to better performance. It indicates that reducing the
propagation error of pseudo labels can improve the model performance in
self-training process.

Table 3. Node classification accuracy on ogbn-arxiv.

Label rate |1% 2% |5% |10%

LPA 51.0 | 56.2 |62.0 65.6
GCN 60.7 | 63.3 |65.0 |65.8
Self-training | 62.2 | 63.9 | 66.1 | 66.5
M3S 63.1 |64.3 |66.9 |68.6

ST-LPGCN | 64.2 | 65.8 | 67.9 | 69.2

(5) LCGCN, LCGAT and CG? outperforms M3S and CGCN on Cora, CiteSeer
and PubMed datasets. LCGCN (LCGAT) directly uses the label information



434 C. Zhang et al.

Cora CiteSeer PubMed

Accuracy(%)

—o— ST-LPGCNgey

—¥— ST-LPGCN,p, 60

—4— ST-LPGCNy
ST-LPGCN

—e— ST-LPGCNgcy

—¥— ST-LPGCNp,

—— ST-LPGCNy,
ST-LPGCN

—e— ST-LPGCNgey

—¥— ST-LPGCNp,

—— ST-LPGCNyy,,
ST-LPGCN

4% 0s% 1% 001%

1% 2% 3% 2% 3% 005% 0075%
Label Rates Label Rates Label Rates

Fig. 2. Accuracy of ST-LPGCN on different datasets using different pseudo label sets.

to reconstruct the aggregation matrix and then train the GCN (GAT) by
aggregating the node feature information. These approaches further use label
information to supervise the aggregation process of GCN (GAT), which
achieves better performance compared with the model learning from pseudo
labels. CG? designs a hierarchical GCN model to capture nodes’ informa-
tion from local to global perspectives. It incorporates the global structure
information to learn a powerful node representation for the classification
task.

ST-LPGCN outperforms the state-of-the-art baselines on all datasets with
different label rates, verifying the effectiveness of our proposed method. The
trainable LPA in ST-LPGCN makes it possible to capture the global struc-
ture and label information, and meanwhile alleviate the error propagation
of the pseudo labels in self-training process.

As the number of labels decreasing, the performance of all methods becomes
worse on all datasets. However, the improvements of accuracy of our ST-
LPGCN becomes increasing compared with the state-of-the-art baseline,
showing the effectiveness of our model to deal with the data with extremely
few labels.

4.3 Ablation Study

In this section, we first make ablation studies to demonstrate the effectiveness of
our pseudo label generation strategy and the trainable LPA in our paper. Then

we

Ps

analyze the impact of the amount of pseudo labels added in the self-training.

eudo Label Generation Strategy. In the pseudo label generation, we

select the nodes with the same pseudo labels generated by the GCN and LPA,
and add them to the training set for the next training process. To verify the
effectiveness of the pseudo label generation strategy, we adopt the following
strategies to make comparing.

ST-LPGCNgen: the pseudo labels generated by the GCN.
ST-LPGCN_pp4: the pseudo labels generated by the LPA.

ST-LPGCNypnion: the pseudo labels are generated by adding all pseudo labels
in GCN or LPA
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Fig. 3. Confusion matrix (the reliability of pseudo label prediction compared with true
label) for ST-LPGCN and ST-LPGCNynion in different iterations. The larger diagonal
value is, the more reliable of the predicted pseudo label. The left column represents the
first iteration and the right column represents the fifth iteration of ST-LPGCN and
ST-LPGCNynion respectively.

As shown in Fig. 2, ST-LPGCNyps0n Obtains better performance than ST-
LPGCNgeny and ST-LPGCNpps due to that it uses additional label (node
features) information. Our ST-LPGCN achieves the best performance, showing
the effectiveness of our generation strategy to select more reliable pseudo labels
of nodes, so as to alleviate the error propagation in self-training process.

As shown in Fig. 3, we further analyze the error propagation of pseudo labels
in the training process, and visualize the confidence scores of pseudo labels com-
pared with the true labels at the first iteration and the fifth iteration. We can
see that the decreasing of confidence scores is more in the first iteration in
ST-LPGCNypi0n- And the error of pseudo labels is magnified as the iteration,
leading to the large gap in the fifth iteration compared with the pseudo label
generation in ST-LPGCN.

Effectiveness of Trainable LPA. The trainable LPA designed in ST-LPGCN
can assign higher transition probability to the node labels belonging to the same
class and reduce the probability of node labels in different classes, which may
reduce the propagation of error information from the possible noise in the adja-
cency matrix itself. To verify this, we conducted experiments to analyze the
effectiveness of the trainable transition probability matrix in LPA. We keep the
same settings and change the pseudo labels generated by traditional LPA for a
fair comparison. The results are reported in Table4. We find that the trainable
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LPA consistently outperforms the traditional LPA on two representative datasets
with all label rates, showing the effectiveness of trainable LPA in ST-LPGCN.

Table 4. Effect of the trainable LPA in ST-LPGCN.

Dataset | Method 0.5% 1% |2% |3% |4%
Cora Traditional LPA |72.6 | 74.4|77.6|79.3|80.1
Trainable LPA | 75.9 | 78.0|80.3 |81.0 | 81.6
CiteSeer | Traditional LPA | 61.4 |67.8/69.5 70.1 |71.2
Trainable LPA |65.2 | 70.7|71.3|72.6 | 73.4

CiteSeer PubMed

Accuracy(%)

1 2 3 S‘ulgcs 5 6 7 1 2 3 S‘ulgcs 5 6 7 1 2 3 S“:gl» 5 6 7
Fig. 4. Sensitivity analysis of the model to the number of pseudo labels in the training
process.

Sensitivity of the Number of Pseudo Labels. In this subsection, we explore
the sensitivity of the number of pseudo labels added to the labeled data. We
conducted experiments taking different numbers of pseudo labels in each self-
training process with a label rate of 0.5% on all datasets. As shown in Fig. 4, at
the beginning of the training process, the more pseudo-labels generated during
each training process, the better the performance of our model. As the training
iteration increasing, the performance will approach stabilization with different
numbers of pseudo labels. The performance of our model gains slight improve-
ments when a certain number of pseudo labels are added to training data. Based
on this observation, we select 60 pseudo labels to expand our training data in
experiments.

5 Conclusion

Graph-based semi-supervised learning is a hot topic, but there is relatively lit-
tle work focusing on semi-supervised learning tasks when the labeled data is
quite few, leading to a significant decline in the performance of many existing
approaches. In this paper, we propose a novel Self-Training model (ST-LPGCN)
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which reinforces the pseudo label generation on the GCNs with Label Propa-
gation algorithm. Our ST-LPGCN improves the effect of GCNs in propagat-
ing labels from high-order neighbors with shallow architecture, and incorporates
both local and global semantic information, which is helpful to predict the pseudo
labels of nodes. In the future work, we will further verify the effectiveness of ST-
LPGCN in other graph learning tasks, for example, link prediction and so on.
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