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ABSTRACT
Video Question Answering (VideoQA) is a challenging video un-
derstanding task since it requires a deep understanding of both
question and video. Previous studies mainly focus on extracting
sophisticated visual and language embeddings, fusing them by del-
icate hand-crafted networks. However, the relevance of different
frames, objects, and modalities to the question are varied along with
the time, which is ignored in most of existing methods. Lacking
understanding of the the dynamic relationships and interactions
among objects brings a great challenge to VideoQA task. To ad-
dress this problem, we propose a novel Relation-aware Hierarchical
Attention (RHA) framework to learn both the static and dynamic
relations of the objects in videos. In particular, videos and questions
are embedded by pre-trained models firstly to obtain the visual and
textual features. Then a graph-based relation encoder is utilized to
extract the static relationship between visual objects. To capture the
dynamic changes of multimodal objects in different video frames,
we consider the temporal, spatial, and semantic relations, and fuse
the multimodal features by hierarchical attention mechanism to
predict the answer. We conduct extensive experiments on a large
scale VideoQA dataset, and the experimental results demonstrate
that our RHA outperforms the state-of-the-art methods.
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Figure 1: The illustration of Relation-aware Hierarchical At-
tention framework.
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1 INTRODUCTION
With the rapid development of deep learning in Computer Vision
(CV) and Natural Language Processing (NLP). Video Question An-
swering (VideoQA), as a interdisciplinary area between language
and vision, has been an active research topic in recent studies in
video understanding. Given a video clip and a video-related ques-
tion, VideoQA is expected to answer the question based on video
grounding, reasoning, and translating. As a practical and compre-
hensive task, VideoQA can benefit other video understanding tasks
such as video retrieval and storytelling.

The general VideoQA architecture consists of a detector, an em-
bedding module, and a predictor. Usually, objects in the video are
firstly detected and then fed into a embedding module. The em-
bedding modules mainly utilize the Convolutional Neural Network
(CNN) or pre-trained R-CNN [10] to obtain the visual features of
objects in video, and sequential models such as Long Short-Term
Memory (LSTM) to encode the texts in the questions. After aligning
the question and video by attention mechanism or bilinear pool-
ing [4, 16], the multimodal features of both video and question are
jointly learned to obtain the answer to the question by the predictor.

However, most of these methods lack the ability of question
localization in videos, which is vital for getting the proper represen-
tations to answer the question. In temporal, only some key frames
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are closely related to the question. In spatial, only crucial areas and
objects are useful to answering. Hence, both the static alignment
in a single frame and the dynamic alignment among all frames in
the video between the question and objects are significant. Besides,
a video consists of multimodal features, i.e., visualizations, concep-
tions, and subtitles, and the intra-relations of different modalities
should also been taken into consideration.

To address the above problems, we propose a novel Relation-
aware Hierarchical Attention (RHA) framework to learn both the
static and dynamic relations of the visual objects in videos. For the
static relations of visual objects in a single frame, we construct a
graph to build the spatial and semantic relationships among objects.
Thenwemeasure themodality importance by taking their relevance
to the question into consideration. For example, in Figure 1, given
a question as "What is behind Leonard when he is talking to Leslie
about his relationship with Penny?", previous methods [19, 20] in-
corporate all information into modeling, including the relationship
between "Leslie" and "Penny". While such relationship is usefulness
and what we focused is the object behind "Leonard", which can
been learned from the visual information of video. The importance
of different modalities should be considered at the static feature
fusion stage. As for learning the dynamic changes of visual objects
in different video frames, we characterize the temporal, spatial, and
semantic relations. We adopt attention mechanism to learn from
each dynamic relations. Our proposed RHA model learn the static
relation among objects, as well as the dynamic relations in time,
space and modality dimensions. On the temporal dimension, the
hierarchical attention locates essential time stamps. On the spa-
tial dimension, it identifies important areas, and in the modality
dimension, the importance of different modality features can also
be learned.

The architecture of our framework is shown in Figure 2. A pre-
trained BERT [7] is applied to extract the features of questions,
candidate answers, and subtitles. For each frame in the video, a
pre-trained Faster R-CNN [30] is applied for object detection and
embedding. All the objects are then fed into a customized graph
attention networks (GATs) [35] with shared weights as a relation
encoder to learn the relationships between objects. The updated
embeddings will be injected into a multimodal attention module,
along with subtitle and question embeddings. Finally, we use a
Multi-Layer-Perceptron (MLP) as an answer prediction module to
generate the correct answer index. We evaluate our framework on
TVQA+ [20] dataset and conduct experiments on temporal ground-
ing, showing the the ability of our model in pointing out relevant
temporal span.

To summarize, our main contributions are:

• Wepropose a novel RHA frameworkwhich adopts a question-
guided hierarchical attention module to capture both static
and dynamic relations of multimodal objects.

• We introduce a graph-based relation encoder to model the
static relationships between visual objects in videos, and
three dynamic relations: temporal relation, spatial relations,
and semantic relations are considered to predict the answer.

• We verify the proposed framework RHA on a large scale
TVQA+ dataset. Experimental results show that our model
outperforms other state-of-the-art methods.

2 RELATEDWORKS
2.1 Video Question Answering
As a typical multimodal task, VideoQA requires thorough visual
and textual understanding. In recent years, some more restricted
sub-tasks have also been proposed to enhance the interpretabil-
ity, such as Knowledge-based VideoQA [9] and Spatio-temporal
grounding VideoQA [20]. Nevertheless, the VideoQA framework
generally consists of a video encoder, a question encoder, an em-
bedding alignment module, and a predictor. With the domination
of deep learning, early methods [8, 41] use CNN to extract features
at frame level. However, most of the CNN-based extractors cannot
seize temporal information in the video. [15, 38] apply LSTM as
a substitute to model temporal context. As for question encoder,
Glove [27] and LSTM are generally applied. As the kernel of the
whole VideoQA framework, embedding alignment module could be
quite sophisticated. Early works [41] rely on hand-craft CNN archi-
tecture to further embed video and question. Inspired by [34], [13]
utilizes attention-based methods to focus on relevant video clips.
Attention mechanism also enhances the interpretability of these
models, since it works in a simple but intuitive way. Another line
of research focuses on graph-based learning. With the popularity
of Graph Neural Networks (GNNs) [17], some works focus on mod-
eling video from the perspective of topology and embed video by
GCNs. [15] constructs a heterogeneous graph which regards both
words in the question and frames in the video clip as nodes and
aligns them by GCNs [17].

The most related work is STAGE model [20], which proposes a
VideoQA framework with spatial and temporal grounding. Com-
pared to STAGE, our RHA contains some critical distinctions: (1)
STAGE designs an elaborate convolutional kernel for encoding,
which is highly customized and cannot capture any relation at-
tributes. In comparison, RHA utilizes a graph-based encoder to
learn both objects embedding and their relations; (2) STAGE fuses
multimodal features by a heuristic method, while we propose an
interpretable hierarchical attention module to fuse multimodal fea-
tures adaptively.

2.2 Relation Understanding
Relation understanding contains many sub-tasks, in which rela-
tion extraction and relation reasoning are two of the most impor-
tant task. Relation extraction aims to detect relationships between
given objects. Prior works recognize relations between objects by
co-occurrence [32] and position [37]. This kind of methods is gen-
erally based on statistics and can only identify spatial relations
(such as behind, below, and cover). Another line of work is semantic
relation extraction, which generally requires a deeper understand-
ing of video. [12] proposes a neural network to extract semantic
relations on a single image. [6] designs a novel Two-Stage Model
to extract the social relationships between characters. Undeniably,
as a stepping-stone of video understanding, most relation extrac-
tion methods are designed as a task-specific module. [5] builds a
trainable cell named MuRel to model pair-wise object relationships,
while [12] discovers implicit relation by adopting an attention-based
object relation detector.

In contrast, relation reasoning aims to represent objects based
on their relations. [18] proposes a Relation Network as a general



solution of relation reasoning in an unsupervised manner. [33]
designs a novel Interaction Canonical Correlation Network for
cross-modal relation reasoning. With the explosive development of
GNNs, recent research suggests that objects and their relationship
can be represented by nodes and edges in the graph. [31] builds a
fully-connected graph for a given image, discovering interactions
with a self-attention mechanism.

Our work is also inspired by [22], which builds a relation-aware
graph network to discover explicit and implicit relations in the
image. We make some targeted improvements for VideoQA task.
The first difference is that we explore objects relations in a video
rather than a single image. Second, we use both visual features
and visual concepts for relation encoding, which enhances the
interpretability and robustness of our framework.

2.3 Multimodal Fusion
As one of the original topics in multimodal learning, multimodal
fusion aims at gaining joint representation of two or more modali-
ties. Some studies [19, 20, 36] applied vector operations between
single-modal features, including vector concatenation, element-
wise multiplication, and element-wise addition. Such researches
are referred to as early fusion since they fuse multimodal infor-
mation before the decision. In contrast, late fusion uses unimodal
decision results and merges the results by a fusion mechanism such
as averaging or voting [2]. With the development of deep learning,
some works [11, 29] have proposed to use trainable model to en-
hance the performance of multimodal fusion. As for unsupervised
learning, [26] presents a multimodal autoencoder to fuse features
adaptively without any supervision. Network Architecture Search
(NAS) is also applied in multimodal fusion [28]. More recently,
bilinear pooling is a practical pathway of fusion [16]. [39] calcu-
lates the outer-product of video, acoustic and textual features to
gain the multimodal joint representation. [25] proposes a low-rank
method to build tensor networks to reduce computational complex-
ity caused by tensor outer-product. With the domination of bilinear
pooling, attention mechanism [40] is also regarded as an effective
method to enhance the interaction between modalities and avoid
redundancy. [24] proposes a Multimodal Attention (MMA) module,
which reweights modalities through the Gram matrix, and [21]
optimizes MMA by design a deeper attention convolutional layer.

In terms of multimodal fusion, [15] and [20] are the most simi-
lar works. However, [20] simply assumes that each modality has
the same weight, ignoring the difference between questions. Co-
attention proposed by [15] lacks the ability to analyze fine-grained
object-level importance. To the best of our knowledge, we are the
first to measure the importance of different time, objects, andmodal-
ities at the same time in this task.

3 METHODS
3.1 The General Framework of RHA
Our work mainly focuses on multiple-choice VideoQA task, which
needs to choose the right answer in a set of candidate answers.
Given (1) a question 𝑞; (2) 5 candidate answers {𝑎𝑘 |𝑘 = 1, ..., 5};
(3) a video clip that consists of keyframes {𝐹𝑡 |𝑡 = 1, ...,𝑇 } (4) the
subtitles of corresponding video {𝑃𝑡 |𝑡 = 1, ...,𝑇 }, our goal is to

predict the index of right answer 𝑎:

𝑎 = argmax
𝑎∈𝑎𝑘

𝑝 (𝑎 |𝑞, 𝑃, 𝐹 ) . (1)

The RHA framework consists of four modules. As shown in
Figure 2, all visual and text inputs are first embedded by the input
encoder. Then a relation encoder is utilized to discover relationships
between visual objects. All these representations are projected into
the same dimension after relation modeling. To learn the relevance
between video and question, we apply the hierarchical attention
module to reweight and fuse representations. Finally, we predict the
right answer and its relevance video clip by an answer predictor.

3.2 Input Encoder
For a given video containing keyframes {𝐹𝑡 }, we use Faster R-CNN
to extract the features of each detected object, followed by PCA to
downsize the dimension of object proposals into a low dimension
representation O = {o𝑖𝑡 ∈ R𝑑𝑜 , 𝑖 ≤ 𝑁𝑜 , 𝑡 ≤ 𝑇 }, where o𝑖𝑡 refers
to the i-th objects of t-th frame. The bounding-boxes B = {b𝑖𝑡 ∈
R4, 𝑖 ≤ 𝑁𝑜 , 𝑡 ≤ 𝑇 } are represented by the coordinate of the top-left
and bottom-right point of the bounding-boxes. The label of objects
is embedded to a vector L = {l𝑖𝑡 ∈ R𝑑𝑙 , 𝑖 ≤ 𝑁𝑜 , 𝑡 ≤ 𝑇 } by Glove [27],
where 𝑑𝑙 is set to 300. For subtitles {𝑃𝑡 }, we use a pre-trained BERT
to extract embeddings S = {S𝑡 ∈ R𝐿𝑠×𝑑𝑠 , 𝑡 ≤ 𝑇 }. The candidate
answers are first concatenated with the question to compose a qa-
hypothesis {Q𝑘 }. The same pre-trained BERT is used to extract
embeddings which are denoted as H = {h𝑘 ∈ R𝐿𝑞×𝑑𝑞 , 𝑘 ≤ 5},
where 𝑑𝑠 and 𝑑𝑞 denote the dimension of word embedding, while 𝐿𝑠
and 𝐿𝑞 refer to the length of subtitles and hypothesis, respectively.

3.3 Relation Encoder
Given a video clip, we discover explicit (spatial) and implicit (se-
mantic) relationships between different objects in the video. Under-
standing these relationships is the key to understanding the video
underlying information. To capture these relationship attributes in
the video, we build an encoder based on GATs [35] to capture the
relationship between objects, processing the spatial relationship
and semantic relationship, respectively.

3.3.1 Spatial Graph Construction. Spatial relation in the video
refers to the position relationship between objects. The spatial
relation may be varied with the variance of the position of objects
and movement of camera. The frame-level spatial relation is de-
noted as a graph G𝑡

𝑠𝑝𝑎 = (V𝑡
𝑠𝑝𝑎,E𝑡𝑠𝑝𝑎), and the video-level spatial

relation can be represented as the concatenation of G𝑡 . We denote
v𝑡,𝑖𝑠𝑝𝑎 as the embedding of i-th node in frame t, and e𝑡,𝑖, 𝑗𝑠𝑝𝑎 refers to the
spatial relation between object i and j. Inspired by [37], the spatial
relations between objects are classified into 11 categories based
on bounding-boxes B𝑡 . Each category refers to a kind of spatial
relations such as cover, in, and near. Note that we use the label of
objects {l𝑡 ∈ R𝑁𝑜×𝑑𝑙 } as node embeddings, rather than the visual
features of objects. We argue that alignment fromwords in question
to objects in video is the key for understanding spatial relation,
while the visual features such as shape, color is irrelevant. And it is
more difficult to align visual features to text features than to align
text features, which affects the accuracy of answering questions.
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Figure 2: An overview of Relation-aware Hierarchical Attention framework

3.3.2 Spatial Graph Update. For each keyframe in the video, we
get a spatial graph G𝑡

𝑠𝑝𝑎 using the methods above. Then we utilize
a customized GAT [35] to update the node embedding. We adopt
multi-head attention to generalize the learning progress of GAT. All
output features of heads are concatenated. In order to encode spatial
relation into GAT, the bias is set to be independent for different
spatial relations, and the projection matrix represents the direction
of relation (from objects or to objects):

l𝑖 = | |𝑀𝑚=1𝜎 (
∑︁
𝑗 ∈N𝑖

𝛼𝑚𝑖 𝑗 ·W
𝑚
𝑠𝑝𝑎l𝑗 ), (2)

𝛼𝑖 𝑗 =
𝑒𝑥𝑝 ((U𝑠𝑝𝑎l𝑖 )⊤ · V𝑑𝑖𝑟 (𝑖, 𝑗)𝑠𝑝𝑎 l𝑗 + b𝑙𝑎𝑏 (𝑖, 𝑗)𝑠𝑝𝑎 )∑

𝑗 ∈N𝑖
𝑒𝑥𝑝 ((U𝑠𝑝𝑎l𝑖 )⊤ · V𝑑𝑖𝑟 (𝑖, 𝑗)𝑠𝑝𝑎 l𝑗 + b𝑙𝑎𝑏 (𝑖, 𝑗)𝑠𝑝𝑎 )

, (3)

where 𝛼 ∈ R𝑁𝑜×𝑁𝑜 is the attention weight, W𝑠𝑝𝑎 ∈ R𝑀×𝑑ℎ×𝑑𝑙 ,
U𝑠𝑝𝑎 ∈ R𝑑ℎ×𝑑𝑙 , V𝑑𝑖𝑟

𝑠𝑝𝑎 ∈ R𝑑ℎ×𝑑𝑙 is the projection matrix, b𝑙𝑎𝑏𝑠𝑝𝑎 ∈
R𝑑ℎ is the bias, and 𝑑ℎ is the dimension of hidden layer.𝑀 refers
to the number of heads of graph attention, which is set to 15 in
our implementation. Residual connection is also involved to avoid
over smoothing in GAT. Updated frame-level features v𝑡𝑠𝑝𝑎 can be
represented as the concatenation of node embeddings.

For different frames in the video, we share the parameters of
GAT. One advantage of weight sharing is that it can reduce the
number of parameters significantly. On the other hand, this relation
encoder can be more robust to the temporal changing of spatial
relationship and the changing of the number of objects.

3.3.3 Semantic Graph Construction. Semantic relation in the video
refers to the relationship that can not be inferred only by postion
and visual information. Similar to spatial relation, semantic relation
between objects may be changed along with the progress of plots.
Given visual features {o𝑡 ∈ R𝑁𝑜×𝑑𝑙 }, the frame-level semantic
relation between objects i and j in frame t is defined as below.

e𝑡,𝑖, 𝑗𝑠𝑒𝑚 =
𝑒𝑥𝑝 (W𝑠 [o𝑖𝑡 ; o

𝑗
𝑡 ])∑

𝑗 ∈N𝑖
𝑒𝑥𝑝 (W𝑠 [o𝑖𝑡 ; o

𝑗
𝑡 ])

, (4)

whereW𝑠 ∈ R2𝑑𝑜×1 is trainable parameters. Treating each object
{o𝑖𝑡 } as a node, we build the semantic graph G𝑡

𝑠𝑒𝑚 = (V𝑡
𝑠𝑒𝑚,E𝑡𝑠𝑒𝑚)

where e𝑡,𝑖, 𝑗𝑠𝑒𝑚 refers to the semantic relation between object i and
j. Note that in this stage, we use the region features {𝑂𝑖

𝑡 } as the

embedding of nodes since the semantic relation between objects is
hard to infer only by their categories. More visual information is
involved as supplementary of relation understanding.

3.3.4 Semantic Graph Update. Following the previous works [22],
we utilize graph attention mechanism to update the node embed-
ding after building semantic graph G𝑠𝑒𝑚

𝑡 for each keyframe in the
video. Multi-head attention is also applied in GAT. All output fea-
tures of attention heads are concatenated to obtain the updated
node embeddings:

o𝑖 = | |𝑀𝑚=1𝜎 (
∑︁
𝑗 ∈N𝑖

𝛽𝑚𝑖 𝑗 ·W
𝑚
𝑠𝑒𝑚o𝑗 ), (5)

𝛽𝑖 𝑗 =
𝑒𝑥𝑝 ((U𝑠𝑒𝑚o𝑖 )⊤ · V𝑠𝑒𝑚o𝑗 )∑

𝑗 ∈N𝑖
𝑒𝑥𝑝 ((U𝑠𝑒𝑚o𝑖 )⊤ · V𝑠𝑒𝑚o𝑗 )

, (6)

where 𝛽𝑖 𝑗 ∈ R𝑁𝑜×𝑁𝑜 is the attention weight, W𝑠𝑒𝑚 ∈ R𝑑ℎ×𝑑𝑜 ,
U𝑠𝑒𝑚 ∈ R𝑑ℎ×𝑑𝑜 , V𝑠𝑒𝑚 ∈ R𝑑ℎ×𝑑𝑜 is the projection matrix, and𝑚 is
the number of heads of graph attention, which is set to 15 in our
implementation. For semantic graph, we do not encode relation di-
rection, since the semantic graph is fully-connected and symmetric.
Residual connection is also involved to avoid over smoothing in
GAT. For different frames in the video, we also share the parameters
of GAT for semantic graph update. Similar to spatial relation, each
frame can be represented as the concatenation of node embeddings
v𝑠𝑒𝑚 = | |𝑇

𝑡=1o
𝑠𝑒𝑚
𝑡 .

3.4 Hierarchical Attention Module
As stated before, a video consists of visual feature, visual concepts,
and subtitles. In order to measure the relevance to the question,
the visual and textual features will be downsized into the same
dimension first. Following the previous works [19, 20], we adopt a
fully-connected layer with residual connection to build downsize
encoding block for object features {o𝑡 }, layer normalization [1] is
also involved:

o𝑖𝑡 = 𝐿𝑎𝑦𝑒𝑟𝑛𝑜𝑟𝑚(𝑅𝑒𝐿𝑈 (W𝑑o
𝑖
𝑡 ) + o𝑖𝑡 ) . (7)

Similar procedure is applied on visual concepts {l𝑡 }, subtitles {s𝑡 },
and qa-hypothesis {h𝑘 }. Then the question is grounded in temporal,
spatial, and modal, generating an updated video features with the
question encoded. Note that in our model, we distinguish the visual



features and visual concepts, since although they all represent visual
information, the description methods are different.

3.4.1 Spatial and Temporal Attention. At the first stage, we locate
the qa-hypothesis spatially and temporally. Given the encoded
hypothesis {h𝑘 } and encoded visual features {o𝑡 }, the attention
scores of visual features𝑀𝑘,𝑡 ∈ R𝐿𝑞×𝑁𝑜 and visual representation
o𝑡,𝑎𝑡𝑡 ∈ R𝐿𝑞×𝑑ℎ is computed as:

𝑀𝑘,𝑡 = 𝑠𝑜 𝑓 𝑡𝑚𝑎𝑥 (h𝑘 · o⊤𝑡 ), (8)

o𝑡,𝑎𝑡𝑡 = 𝑀𝑘,𝑡o𝑡 . (9)
The question-guided attention scores actually represent the rele-
vance between the qa-hypothesis and the objects in different frames
so that the predictor can focus on important visual objects. The
same process is performed on visual concepts and subtitles to com-
pute representation l𝑡,𝑎𝑡𝑡 ∈ R𝐿𝑞×𝑑ℎ and s𝑡,𝑎𝑡𝑡 ∈ R𝐿𝑞×𝑑ℎ .

3.4.2 Multimodal Attention. In the ideal case, all modalities are
as same important for answering the question. However, the ques-
tions are often changeable and comprehensive, resulting in the
redundancy of video. Different questions may only focus on the
information of a certain modal in the video. In this case, we need
to focus on some modalities to answer the question better. Moti-
vated by this, we design a multimodal attention mechanism at the
second stage of the hierarchical attention. First, we concatenate
o𝑡,𝑎𝑡𝑡 , l𝑡,𝑎𝑡𝑡 , and s𝑡,𝑎𝑡𝑡 as multimodal features 𝑋𝑡 ∈ R𝐿𝑞×𝑑ℎ×3. The
feature 𝑋𝑡 is transformed into low dimension space by trainable
parametersW𝐹 ∈ R𝑑ℎ×𝑑ℎ . Then we adopt the Gram matrix of 𝑋𝑡

to capture modal correlation by multiplying 𝑋𝑡 with its transpose.
The weight of each modal is yielded through the convolution layer
and a softmax activation:

𝑌𝑖 =

3∑︁
𝑗=1

𝑋 𝑗 ·
𝑒𝑥𝑝 ((W𝐹𝑋 )⊤ (W𝐹𝑋 )) 𝑗,𝑖∑
𝑖 𝑒𝑥𝑝 ((W𝐹𝑋 )⊤ (W𝐹𝑋 )) 𝑗,𝑖

. (10)

Note that at the second stage, we apply a self-attention mecha-
nism for multimodal fusion rather than question guided attention,
since the question has been encoded into the multimodal features
in the first stage so that the second stage mainly focuses on the
importance of the modalities themselves.

3.5 Answer Predictor
The last module is an answer and localization predictor. The RHA
is required to predict the answer based on multimodal features
𝑌 ∈ R𝑇×𝐿𝑞×𝑑ℎ . Minimum time spans related to the question are
also predicted based on the joint representation. We first apply a
convolutional layer withmax-pooling layer to obtain the output𝐴 ∈
R𝑇×𝑑ℎ . For temporal prediction, 𝐴 ∈ R𝑇×𝑑ℎ is sent into two linear
layers with softmax to produce start probabilities p1

𝑘
∈ R𝑇 and

end probabilities p2
𝑘
∈ R𝑇 for each frame 𝑘 . For answer prediction,

an additional linear layer is first utilized to further encode video-
text representation 𝐴𝑘 . Then a global representation𝐺𝑔

𝑘
∈ R𝑑ℎ is

generated bymax-pooling across all the time steps. Taking temporal
prediction into consideration, we generate temporal proposals using
dynamic programming. For each proposal, we generate a local
representation𝐺𝑙

𝑘
∈ R𝑑ℎ by max-pooling 𝐴𝑘 , concatenating with

𝐺
𝑔

𝑘
to obtain𝐺 ∈ R2𝑑ℎ×5 . Finally, concatenated features𝐺 is sent to

a softmax function to generated the answer scores P𝑎𝑛𝑠 ∈ R5. Note
that we mainly implemented this module based on STAGE [20],
and we only make some essential changes to fit the input of visual
features, visual concepts, and subtitles for a fair comparison.

3.6 Training Loss
As we need to answer the question with temporal grounding, the
RHA framework is trained with supervision from ground truth
(GT) bounding boxes, GT time proposal, and GT answer. For spatial
supervision, we define a box as positive for spatial prediction if it
has an IoU larger than 0.5 with the GT box. The attention weights
of positive objects should be higher than negative ones. So LSE [23]
loss function is applied since it is easier to optimize [3]:

𝑙𝑜𝑠𝑠𝑆𝑝𝑎 =
1
𝑁

𝑁∑︁
𝑖=1

𝑁∑︁
𝑟𝑝 ∈Ω𝑝 ,𝑟𝑛 ∈Ω𝑛

𝑙𝑜𝑔(1 + 𝑒𝑥𝑝 (𝑀𝑖,𝑡,𝑟𝑛 −𝑀𝑖,𝑡,𝑟𝑝 )), (11)

where 𝑀𝑖,𝑡,𝑟 is the 𝑟 -th element of the matching scores 𝑀𝑖,𝑡 . For
temporal supervision, cross-entropy loss is applied to measure the
probabilities of start and end time:

𝑙𝑜𝑠𝑠𝑇𝑒𝑚𝑝 =
1
2𝑁

𝑁∑︁
𝑖=1

(𝑦𝑠𝑡𝑖 𝑙𝑜𝑔P1 + 𝑦𝑒𝑑𝑖 𝑙𝑜𝑔P2), (12)

where 𝑦𝑠𝑡 and 𝑦𝑒𝑑 is ground truth start and end indices. Similarly,
given answer probabilities P𝑎𝑛𝑠 , we also apply a cross-entropy loss
as answer prediction loss:

𝐿𝑜𝑠𝑠𝐴𝑛𝑠 =
1
𝑁

𝑁∑︁
𝑖=1

𝑦𝑎𝑛𝑠𝑖 𝑙𝑜𝑔P𝑎𝑛𝑠 , (13)

where 𝑦𝑎𝑛𝑠 is the index of ground truth answer. Finally, all three
losses are summed up as:

𝐿𝑜𝑠𝑠 = 𝜔𝐴𝑛𝑠𝐿𝑜𝑠𝑠𝐴𝑛𝑠 + 𝜔𝑆𝑝𝑎𝑙𝑜𝑠𝑠𝑆𝑝𝑎 + 𝜔𝑇𝑒𝑚𝑝𝑙𝑜𝑠𝑠𝑇𝑒𝑚𝑝 , (14)

where 𝜔𝐴𝑛𝑠 , 𝜔𝑆𝑝𝑎 and 𝜔𝑇𝑒𝑚𝑝 are the weights of different loss. In
our case, 𝜔𝐴𝑛𝑠 is set to 1, while 𝜔𝑆𝑝𝑎 and 𝜔𝑇𝑒𝑚𝑝 are both 0.5.

4 EXPERIMENT
4.1 Dataset
TVQA+ [20] is a large scale multiple-choice VideoQA dataset with
spatio-temporal grounding. All data is collected from "The Big
Bang Theory". The TVQA+ dataset is the augmented version of
TVQA dataset [19], with 21.8K 60-90 seconds long video clips and
29.4K multiple-choice questions grounded in both the temporal
and the spatial domains. Each question is followed by 5 candidate
answers, in which only one of them is the right answer. For spatio-
temporal grounding, there are 310.8K bounding boxes linked with
referred objects and people, spanning across 2.5K categories. All
questions are composed of a question part("Where/Why/What") and
a localization part("when/before/after").

4.2 Implementation Details
In our implementation, Layer Normalization [1] and Dropout is
applied between every two full-connected layers. As for hyper-
parameters, dimension of object features 𝑑𝑜 is set to 300, while
textual feature dimension 𝑑𝑠 and 𝑑𝑞 are 768. The dimension of
hidden layers 𝑑ℎ is set to 128, while 𝑑ℎ in hierarchical attention is



Table 1: Comparison with state-of-the-art methods on
TVQA+ test set.

Model Acc Temp. mIoU ASA
ST-VQA [14] 48.28 - -

two-stream [19] 68.13 - -
STAGE-video [20] 52.75 10.90 2.76
STAGE-sub [20] 67.99 30.16 20.13
STAGE [20] 72.14 30.68 20.99
FAMF(Ours) 74.34 31.53 21.77

32. The dropout rate is set to 0.1. At the training stage, batch size
is set to 16 to balance the training speed and memory cost, while
at the inference stage, we set batch size to 1. Adam optimizer is
applied for training, the initial learning rate is set to 0.001 and will
be decayed by 0.1 for every 10 epochs.

4.3 Evaluation Metrics
In this work, we use three evaluation metrics to measure perfor-
mance. First, we use classification accuracy to measure QA perfor-
mance. We also consider temporal localization performance, which
is evaluated by temporal mean Intersection-over-Union (Temp.
mIoU). Finally, we evaluate QA accuracy and temporal localiza-
tion jointly by Answer-Span joint Accuracy (ASA) [20]. For this
metric, we regard a prediction as positive only if the predicted tem-
poral localized span has an IoU ≥ 0.5 with the ground-truth span
and the answer is correctly predicted at the same time.

4.4 Experimental Results
We mainly compare with state-of-the-art methods on TVQA+ [20].
ST-VQA [14] is designed for question answering on short videos
or GIFs. Two-stream model [19] is a method to predict the answer
based on videos and subtitles, respectively. The two-streammodel is
retrained based on official code and TVQA+ data since the original
two-stream uses Glove rather than BERT [7] to embed subtitles,
which may result in worse performance. STAGE [20] also encodes
frame-wise regional visual representations and neural language
representations, which also implements temporal localization and
spatial grounding. STAGE-sub means only the subtitle branch is
activated for question answering, while STAGE-vid means only
video features are taken as input. STAGE is also retrained with the
official code. All models are trained on the train set and tested on
the test set. The experimental results are shown in Table 1.We select
STAGE as our main baseline method. Experimental results show
that our RHA model outperforms other methods by a significant
margin(74.34 vs. 72.14).

We also report the performance of our model on different ques-
tion types. As shown in Table 2, we classify the questions according
to the first word and select the most frequent five classes. Sur-
prisingly, our RHA performs quite well for questions started with
"Why", which are generally regarded as hard cases in VideoQA.
This phenomenon indicates that RHA captures implicit informa-
tion for reasoning and answering. However, for questions started
with "Who" or "How", RHA still leaves a lot to be desired, which
may be the aftermath of the absence of acoustic analysis.

Table 2: Evaluation by question type on TVQA+ valid set

Model Acc Temp. mIoU ASA
What 72.23 31.68 20.81
Why 81.60 31.81 21.75
Where 73.63 31.38 23.97
Who 69.57 26.96 15.21
How 69.23 30.68 20.99

Table 3: Experimental results of using different modalities
on valid set.

model Acc Temp. mIoU ASA
baseline 70.16 30.05 19.52
RHA-re 71.72 30.43 19.98
RHA-vc 71.89 30.76 20.11
RHA-vs 72.08 30.88 20.15
RHA-ha 72.45 30.93 20.31
RHA-full 72.58 31.30 20.64

4.5 Ablation Study
To measure the effectiveness of our proposed RHA framework, we
drop the relation encoder and hierarchical attention, respectively.
We report the ablation results on the TVQA+ valid set, which are
shown in Table 3. As stated before, we select STAGE as our main
baseline method. RHA-re means we only applied relation encoder
and no attention fusion is activated. RHA-vc and RHA-vs mean
we use visual concepts and visual features for relation encoder,
respectively. RHA-ha means only the hierarchical attention module
is applied, and the relation encoder is dropped. RHA-full is the full
version of RHA framework.

4.5.1 The effect of Relation Encoder. First, we analyze the effect
of the relation encoder. From lines 1 and 2 in Table 3, we can find
the relation encoder brings an accuracy improvement of about 1%
compared to the baseline model. The results show that introducing
relation modeling, which can discover the potential relationships
between objects, helps better video understanding. For semantic re-
lation, commonsense (such as traffic rules, physics rules, etc.) is less
considered in the previous VideoQA models, and this knowledge
can be described in terms of the internal connections between ob-
jects. For example, given a question like "Why Sheldon stop the car",
we need to build a connection between traffic lights and vehicles,
answering the question based on the fact that the traffic light is
red. These kinds of questions are exactly what the previous models
difficult to learn by convolutional layer, but can be learned through
our implicit relation module.

On the other hand, some questions may refer to the position
of objects. Similarly, taking "What is near Sheldon" as a toy exam-
ple, previous models may use large amounts of training data for
pattern recognition, answering the question based on objects that
often appear with Sheldon. However, these methods do not really
understand the concept of "near", but only choose the candidate
answer based on the principle that "what you see is what you an-
swer". Our spatial relation module encodes the position of objects



Answer:        
1) Plates
2) A can of pepsi
3) A stack of magazines
4)  "A candle
5): "A bookshelf

Question: What was behind Mrs . 
Cooper when she told Sheldon to 

just pretend he is Chinese ?
Cooper

Plates

Sheldon

No Relation

00:00:00:875   00:00:03.712
Mrs Cooper : His eyes came out a little thin , but 

you can just pretend he  's Chinese .

GT Span Pred.
00:00:00:000   00:00:09.460

RHA Pred.
00:00:04:330   00:00:10.330

Answer:
1) Penny was at home
2) Penny was working at a restaurant
3) Penny was at bed
4) Penny was walking in the street
5) Penny was in the kitchen

Sheldon

Penny

Table

Question: Where was Penny when she 
called to Leonard ?

00:00:37:399   00:00:41.444
 Penny : And you  'll never guess who  's here 

infecting my entire station .

GT Span Pred.
00:00:39:920   00:00:47.720

RHA Pred.
00:00:32:660   00:00:44.660

(b)(a)

Figure 3: Positive examples to illustrate the process of the RHA framework. Darker color refers to lower modality weight.

by their bounding boxes so that the RHA can explicitly modeling
spatial relationships and answer these kinds of questions from an
interpretable perspective.

4.5.2 The usefulness of Visual Concepts and Visual Features. One
difference between the RHA framework and previous models is
that we use visual concepts rather than visual features to model
spatial relations. Compared to visual features, visual concepts are
more abstract and concise as a text-based category. The 2nd and
3rd lines in Table 3 show that using visual concepts for the spatial
relation module can improve performance. The results validate our
assumption that the abstract features that are easy to align with
the question are more suitable than the specific features that are
not in the same space as questions. In the ideal case that every
object mentioned in question has its annotations, we can focus
on understanding spatial relationship, ignoring the bias caused by
object alignment.

As shown in the 2nd and 4th lines in Table 3, accuracy will de-
crease when the visual concepts are applied in the semantic relation
encoder. We argue that using only categories in implicit relation
reasoning is too hard. The absence of visual semantic information
leads to wrong or unreasonable reasoning. For example, it is hard
to judge why a vehicle is stopped if we only know there is a traffic
light but do not know its direction and color. Compared to using
too abstract embedding that may lead to misunderstanding, it is a
better solution to use more detailed visual features in the reasoning
stage and then use a convolutional layer or a fusion module to
perform the alignment.

4.5.3 The effect of Hierarchical Attention. At last, we discuss the
influence of the Hierarchical Attention (HA) module. Lines 1 and 5
in Table 3 shows that HA brings an improvement of about 2% in
accuracy. In the first stage of HA, the question is used to measure
the weight of frames and subtitles temporally. In general, only part
of the time periods is related to the questions. By magnifying the
weight of important time periods, the RHA framework can discover
information better. Although in these periods, only a few objects
and words in subtitles are strongly related (e.g. some words are cited
in the question, or the question mentions specific objects). Thus
the scores of each words and objects are calculated. The question is

actually encoded into the representation of the video in this stage
so that the video representation is adapted to the specific questions.

In the second stage of HA, we reweight different modalities.
One disadvantage of the question-guided spatio-temporal attention
mentioned in the first stage is that all modalities actually have the
same contribution for question answering. However, it is common
that the question is unrelated to some modalities (e.g. the problem
may be purely visually related and not related to subtitles). Previous
research lacks a discussion on the importance of modality. Accord-
ing to the multimodal attention mechanism, our RHA framework
learns the weight of different modalities adaptively, reaching a more
precise localization of questions. Another scenario like "What does
Sheldon say..." is also a typical case. Although it refers to a person,
what did the person say is more important. For these questions,
the key point is searching in candidate answers that have a similar
representation with subtitles.

4.6 Case Study
To illustrate the RHA framework performance better, we select two
right-answered examples randomly to better illustrate the process
of RHA framework. As shown in Figure 3, we visualize the main
objects of each frame and their relations. The weight of modalities
is also visualized by color. Figure 3(a) shows the influence of spatial
modeling. Given the question as "What was behind Mrs. Cooper
when she told Sheldon to just pretend he is Chinese?", ground
truth time annotation is 0s-9.46s, and the true answer is "Plates".
At the 3.71 seconds of the video, the subtitles mentioned, "Mrs.
Cooper: His eyes came out a little thin, but you can just pretend he’s
Chinese". The difference between ground truth and our result (0s
vs. 4.33s) may because before 4.33s, although Cooper and Sheldon
had occurred, Cooper did not say anything, so the RHA regards
these frames as irrelevant. After 10s, plates never appeared again,
and the conversation between Sheldon and Cooper shifted to other
topics. RHA labeled 10.33s as the end time, which is still in the
acceptable error range. As for spatial relation modeling, two main
objects related to "Mrs. Cooper" are "Sheldon" and "plates". Among
them, Sheldon was sitting on the right side in frame 2 and 4, and
the plates were first overlapped with Cooper at frame 1, then at
frame 3, the spatial relation between them is recognized as "close



to the left". Based on the spatial adjective "behind" in the question,
RHA infers "Plates" as the right answer, indicating that RHA can
understand spatial relations in video.

Figure 3(b) is another example. The given question is "Where was
Penny when she called to Leonard?", time annotation is from 39.92s
to 47.72s, while the ground truth answer is "Penny was working
at a restaurant.", main object annotations include Penny, Leonard,
and some tableware. RHA proposed 32.66s-42.66s as temporal local-
ization. We find that at 32s, Sheldon was sitting in the restaurant,
and at 42s, Penny called to Leonard. This case shows that RHA is
inclined to use the moment of scene transition as the key point.
RHA caught some objects that only appeared in the restaurant and
connected them to Penny with a higher implicit relation score to
answer the question. We also find our RHA gives subtitles a lower
weight, which proves that RHA could focus on specific modalities
by Hierarchical Attention.

Plus, we also visualize some negative examples predicted by our
RHA framework, as shown in Figure 4. Most of the negative cases
can be classified into four categories: (1)Temporal ambiguity; (1)Au-
dio understanding; (2)Causal reasoning; (3)Counting. Figure 4(a)
shows a typical case of temporal ambiguity. For given question
"What is Amy drinking when evaluating the monkey?", we need to
understand the meaning of "evaluating", which is obscurely hid-
den in Amy’s dialogue. In Figure 4(b), although the question "Who
knocked the door when Bernadette, Amy, and Penny were chatting?"
is not quite difficult, the moment of knocking requires listening
to the sound. In case that RHA only takes keyframes and subtitles
as input, it can not understand any acoustic information, which
finally leads to time dislocating (0-14s vs. 11-22s). In Figure 4(c),
the question "Why did Raj tell himself to turn his pelvis when Penny
was giving him a hug?" can be answered by the fact that Raj likes
Penny and he is glad to have physical contact with her. However,
commonsense and causal reasoning need external knowledge as
a supplement, which is not involved in our framework. For these
questions, knowledge-based methods provide a feasible idea. In
Figure 4(d), we show a negative example caused by counting error.
Given a question "How many times does Amy bounce the quarter
into the glass when Amy and Penny are playing the game?", RHA lo-
cates the event precisely (14.33s-35.66s vs. 13.52s-32.08s). However,
RHA fails to count the times of bouncing. For temporal counting,
there is not a well-performed method yet, since it needs a deep
understanding of action and number.

5 CONCLUSION
In this paper, we propose a novel RHA framework for VideoQA
task. As a challenging video understanding task, VideoQA needs
a comprehensive understanding of both visual and textual infor-
mation. To address the video redundant phenomenon, we design
a novel hierarchical attention module. The hierarchical attention
module firstly measures the temporal and spatial importance based
on their relevance to the question. Then scores of different modali-
ties are calculated at the second stage to fuse multimodal features
efficiently. As an important underlying semantic information, re-
lations between objects reflect interaction and connections. To
involve relation understanding into VideoQA, We build a graph-
based relation encoder to capture such relation information and

(a)
Answer:        
1) Wine (RHA Pred.)
2) Iced tea
3) Hot tea
4) A hot coffee
5) A water (Ground Truth)

Question: What is Amy drinking 
when evaluating the monkey?

GT Span Pred.
00:00:12:040   00:00:19.610

RHA Pred.
00:00:01:000   00:00:12:000

00:00:08:846   00:00:14:185
Amy, Bernadette, Penny. Amy, 

Bernadette, Penny. Amy, Bernadette, 
Penny.

(b)
Answer:        
1) Amy (RHA Pred.)
2) Sheldon (Ground Truth)
3) Bernadette 
4) Penny 
5) Leonard

Question: Who knocked the door 
when Bernadette , Amy and Penny 

where chatting?

GT Span Pred.
00:00:11:980   00:00:22.060

RHA Pred.
00:00:00:660   00:00:14:660

00:00:12:591   00:00:19:865
I'm leading a study to see if deficiency 

of the monoamine oxidase enzyme 
leads to paralyzing fear in monkeys.

(c)
Answer:        
1) Raj was trying to get away from Penny.
2) Raj had become excited and did not 
want Penny to know . (Ground Truth)
3) Raj likes to give himself odd instructions 
4) Raj did not like hugging Penny.
5) Raj is weird. (RHA Pred.)

Question: Why did Raj tell himself to turn 
his pelvis when Penny was giving him a 

hug?

GT Span Pred.
00:00:00:000   00:00:05.400

RHA Pred.
00:00:04:330   00:00:06:330

00:00:00:000   00:00:02:053
Uh oh. Turn your pelvis

(d)
Answer:        
1) Four times
2) Three times (Ground Truth)
3) Two times (RHA Pred.)
4) One time
5) One and a half times

Question: How many times does 
Amy bounce the quarter into the 
glass when Amy and Penny are 

playing the game?

GT Span Pred.
00:00:13:520   00:00:32.080

RHA Pred.
00:00:14:330   00:00:35:330

00:00:25:035   00:00:31:500
l spent my childhood throwing coins 

into wishing wells hoping for friends. At 
a certain point, you start doing trick 

shots to keep things interesting.

Figure 4: Some negative examples of TVQA+ valid set. RHA
predictions are colored in red, while the ground truth pre-
dictions are colored in purple.

embed it into objects by weight-shared GATs. Experimental results
on TVQA+ dataset validate the performance of RHA.
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