
An End-to-End Neighborhood-based Interaction Model for
Knowledge-enhanced Recommendation

Yanru Qu1∗, Ting Bai2,3∗, Weinan Zhang1, Jianyun Nie4, Jian Tang5,6,7
1Shanghai Jiao Tong University, 2Beijing University of Posts and Telecommunications, 3Renmin University of China
4Université de Montréal, 5Mila-Quebec Institute for Learning Algorithms, 6HEC Montréal, 7CIFAR AI Research Chair

kevinqu@apex.sjtu.edu,baiting0317@gmail.com,wnzhang@sjtu.edu.cn
nie@iro.umontreal.ca,jian.tang@hec.ca

ABSTRACT
This paper studies graph-based recommendation, where an inter-
action graph is built from historical responses and is leveraged to
alleviate data sparsity and cold start problems. We reveal an early
summarization problem in previous graph-based models, and pro-
pose Neighborhood Interaction (NI) model to capture each neighbor
pair (between user-side and item-side) distinctively. NI model is
more expressive and captures more complicated structural pat-
terns behind user-item interactions. To enrich the neighborhood
information, we also introduce Graph Neural Networks (GNNs)
and Knowledge Graphs (KGs) to NI, resulting an end-to-end model,
namely Knowledge-enhanced Neighborhood Interaction (KNI). Our
experiments on 4 real world datasets show that, compared with
state-of-the-art feature-based, meta path-based, and KG-based rec-
ommendation models, KNI achieves superior performance in click-
through rate prediction (1.1%-8.4% absolute AUC improvements)
and outperforms by a wide margin in top-N recommendation.
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1 INTRODUCTION
Recommender systems have become increasingly important in var-
ious online services for helping users find the information they 
want. However, existing recommender systems are challenged by
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the problems of data sparsity and cold start, i.e., most items re-
ceive only a few feedbacks (e.g., ratings and clicks) or no feedbacks
at all (e.g., for new items). These problems raise important chal-
lenges and attract a large amount of research work in both academic
and industrial communities. The existing approaches usually ex-
tend user/item representations with similar users/items [9, 14, 16].
Knowledge graphs have also been used to provide general neighbor-
hood information [11, 26, 30]. Through learning more expressive
representations, the user-item interactions get enhanced, and the
recommendation quality is promoted.

Graph-based recommendation models usually exploit the struc-
tural information of user-item interaction graphs. For example,
Graph Convolution Network (GCN) [23, 28] is utilized to integrate
high-order neighborhood information in user/item representations.
Attention network [26] has also been introduced to simulate user
preferences on knowledge graphs. We observe that these methods
generally summarize user- and item-side neighborhood informa-
tion in single embedding vectors before learning user-item interac-
tions. This early summarization behavior may hide the interactions
between user- and item-neighbors. For example, a system is recom-
mending a film to a user, where the user has 2 neighbors (e.g., rating
5 stars): “La La City” (City for short) and “Interstellar” (Inter for
short), and the item has 2 neighbors (e.g., film tags): “Romance” and
“Fiction”. We know that “City” is a romance film, and “Inter” is a
science fiction film, thus the most significant patterns are the pairs
(“City”, “Romance”) and (“Inter”, “Fiction”). This example illustrates,
in addition to user-item interactions, there exist interactive patterns
between user- and item-neighbors. If the system can capture such
useful patterns, and filter out other noisy patterns, it will achieve a
better understanding of users’ complicated taste (e.g., a user favors
different genres) and items’ characteristics. Learning interactions
among user- and item-side neighbors could be very expressive,
however, the early summarization behavior may hide such inter-
actions. Therefore, we argue that previous models are limited in
exploring valuable neighborhood structures.

To address the early summarization problem, we extend user-
item interactions to neighbor-neighbor interactions, and propose
a unified Neighborhood Interaction (NI) model. More specifically,
we propose a bi-attention network for NI, which takes both user-
and item-neighbors into consideration, and captures neighbor pairs
distinctively. We also utilize Graph Neural Networks (GNNs) to
encode high-order neighborhood information, and introduce knowl-
edge graphs to increase the user-item connectivity. The final model,
called Knowledge-enhanced Neighborhood Interaction (KNI), is
evaluated on 4 real-world datasets and compared with 8 feature-
based, meta path-based, and graph-based models. Our experiments
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show that KNI outperforms state-of-the-artmodels (i.e.,Wide&Deep,
MCRec, PinSage and RippleNet) by 1.1%-8.4% of AUC in click-
through rate prediction, and exceeds baseline models by a wide
margin in Top-N recommendation. We also provide a case study to
demonstrate the early summarization problem.

The rest of this paper is organized as follows: we first define the
problem and introduce our KNI model in Section 2. And then we
demonstrate the experiments and discuss the results in Section 3.
Related works are summarized in Section 4. Finally, Section 5 con-
cludes this paper.

2 KNOWLEDGE-ENHANCED
NEIGHBORHOOD INTERACTION

In this section, we define graph-based recommendation and discuss
the early summarization problem at first, and then we introduce
Neighborhood Interaction (NI) model. We further extend NI with
Graph Neural Networks (GNNs) and Knowledge Graphs (KGs).
Finally, we discuss the overall architecture of Knowledge-enhanced
Neighborhood Interaction (KNI) model. Fig. 1 provides a global
picture of KNI.

2.1 Neighborhood Interactions
Graph-based recommender systems build interaction graphs from
historical responses. The graphs enrich the connectivity between
users and items, and thus enhance the user-item interactions with
structural information.

2.1.1 User-item Interaction Graph. The user-item interaction his-
tory can be represented by an interaction matrix, Y ∈ R |U |× |V | ,
whereU = {u1,u2, . . . ,un } is the set of users,V = {v1,v2, . . . ,vm }

the set of items. An element yu,v indicates the feedback of user u
on item v . In this paper, we assume that yu,v takes a binary value
(which could be easily extended to other values). Regarding the
positive responses in Y as edges, we build the interaction graph
for users and items, Gr ec = {(u, c,v)|u ∈ U ,v ∈ V , c = 1}. In Gr ec ,
users’ neighbors are items, and items’ neighbors are users.

2.1.2 Early Summarization. Most previous graph-based recommen-
dation models follow 2 stages: summarize neighborhood informa-
tion into user/item representations, and learn user-item interactions
from the enhanced representations. Denote Nu and Nv as neigh-
borhoods of the user and item, u and v as user/item representations.
The user-item interaction is usually modeled as the inner product
of user and item representations.

u = agg(Nu ) (1)
v = agg(Nv ) (2)

ŷu,v = σ (⟨u, v⟩) (3)

where agg() is an aggregation functionwhichmaps a set of neighbor
nodes into a single embedding vector, σ () is the sigmoid function
converting the interaction ⟨u, v⟩ into a probability. For simplicity,
we may omit σ in following discussion.

Different aggregation functions have been proposed to learn
enhanced user/item representations, including averaging, attention
network, [26, 27, 30] etc. These models can be generally formulated

as

Average: u = 1
|Nu |

∑
i ∈Nu

xi (4)

Attention: αu,i = softmaxi (w⊤[xu , xi ] + b) (5)

u =
∑
i ∈Nu

αu,ixi (6)

xu is the embedding vector of user u, xv is of item v , xi is of node
i , and αu,i is the user-side attention score produced by an attention
network. w and b are attention network parameters. Since we are
not focusing on the attention network structure, in this paper, we
only employ the above attention network (Eq. (5)), where [, ]means
concatenation.

Most previous methods summarize user/item neighborhood in-
formation before learning user-item interactions, without consid-
ering the possible neighbor-neighbor interactions. We call such a
behavior as early summarization.

2.1.3 Neighbor-Neighbor Interaction. Through expanding the in-
teraction term ŷu,v (before taking σ ),

Average: ŷu,v = ⟨
1

|Nu |

∑
i ∈Nu

xi ,
1

|Nv |

∑
j ∈Nv

xj ⟩ (7)

=
∑
i ∈Nu

∑
j ∈Nv

1
|Nu | |Nv |

⟨xi , xj ⟩ (8)

Attention: ŷu,v = ⟨
∑
i ∈Nu

αu,ixi ,
∑
j ∈Nv

αv, jxj ⟩ (9)

=
∑
i ∈Nu

∑
j ∈Nv

αu,iαv, j ⟨xi , xj ⟩ (10)

it is obvious that Eq. (8) and (10) share a general form

ŷ = A ⊙ Z (11)

s.t.
∑
i, j

Ai, j = 1 , Zi, j = ⟨hi , hj ⟩ (12)

where A ∈ R |Nu |× |Nv | is a weight matrix summing up to 1, Z ∈

R |Nu |× |Nv | is a matrix of inner product terms, and ⊙ represents
the sum of element-wise product. According to this form, graph-
based recommendation models learn two things: (i) modeling the
interactions of each node pairs (as Z does), (ii) assigning proper
weights for different interactions (as A does).

We propose a bi-attention network to better utilize the neighbor-
hood information, namely Neighborhood Interaction (NI) model

αi, j = softmaxi, j (w⊤[xu , xi , xv , xj ] + b) (13)

ŷu,v =
∑
i ∈Nu

∑
j ∈Nv

αi, j ⟨xi , xj ⟩ (14)

Different from Eq. (5), Eq. (13) takes both user- and item-side neigh-
bors into consideration. In Eq. (14), NI model can learn the inter-
actions of each neighbor pairs before making prediction, and each
interaction term can be weighted properly. Through delving deep
into the general form in Eq. (11), NI takes care of all neighbor-
neighbor interactions before prediction, therefore, NI addresses the
early summarization problem of previous graph-based recommen-
dation models.
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Figure 1: Model overview. Note: Red circles denote users. Green circles denote rated or unseen items. Blue circles denote non-
item entities. Dash circles denote user and item neighborhoods. In this example, a KIG is constructed at first, and then higher
hop neighborhood information is aggregated into local neighbors. Finally, the user and item neighborhoods are collected to
compute neighborhood interactions.

It is worth noting that the average aggregation and attention
aggregation models can be regarded as special cases of NI. Average
aggregation model regards the weight matrix as a constant A =
1/|Nu | |Nv |, and attention aggregation model is equivalent to rank-
1 matrix decomposition A = αuα

⊤
v , where αu and αv are column

vectors of the user-/item-side attention scores.
We also add the user and the item to their neighborhoods, i.e.,u ∈

Nu , v ∈ Nv , thus the interactions between user and item (u,v),
user and item neighbor (u, j), user neighbor and item (i,v), user
neighbor and item neighbor (i, j) are all considered for prediction.
The NI model is illustrated in Fig. 1 (d), where the edges represent
interactions among two neighborhoods.

2.2 Integrating High-order Neighborhood
Information

In previous discussion, the user neighbors are ever-rated items,
and the item neighbors are historical audience. The interaction
graph Gr ec also contains high-order neighborhood information,
for example, a user is a 2-hop neighbor of another user if they have
rated the same items, an item is a 2-hop neighbor of another item
if they are favored by the same group of people. Introducing high-
order neighborhood information has shown effective [23, 25, 28] in
graph-based recommendation, thus we utilize Graph Convolution
Network (GCN) [15] and Graph Attention Network (GAT) [24] to
encode high-order neighborhood information for NI model.

Graph Convolution Network computes high-order node rep-
resentations by stacking several graph convolution layers. Each
graph convolution layer computes a node representation according
to its nearest neighbors and itself (equivalent to a self loop in the
graph). For a node u, a 2-layer GCN computes

x1i = σ (
1

|Ni |

∑
j ∈Ni

w1xj + b1) (15)

x2u = σ (
1

|Nu |

∑
i ∈Nu

w2x1i + b
2) (16)

where xj is the feature vector or initial embedding of node j, x1i
and x2u are outputs of the 1st and 2nd graph convolution layers, Ni
and Nu are neighborhoods of i and u, and w and b are parameters

to be learned. Successive graph convolution layers are separated
by non-linear transformation σ (), which is usually ReLU.

Graph Attention Network is similar to GCN except that node
embeddings are computed by multi-head self attention networks.
For a node u, a 2-layer GAT computes (single head)

x1i = σ (
∑
j ∈Ni

α1i, jw
1xj + b1) (17)

x2u = σ (
∑
i ∈Nu

α2u,iw
2x1i + b

2) (18)

where α li, j is the attention score of node j to node i , produced by
the l-th layer attention network1

α li, j =
exp(LeakyReLU(wl

a
⊤
[xl−1i , x

l−1
j ] + bla ))∑

k ∈Ni exp(LeakyReLU(w
l
a
⊤
[xl−1i , x

l−1
k ] + bla ))

(19)

where wl
a and bla are parameters of the attention network, other

notations are the same as GCN.
For any target node i , we can generate node embeddings xli

containing high-order neighborhood information with GCN or
GAT [15, 24]. And {xli , i ∈ Gr ec } can replace feature vectors or
initial embeddings in NI model (Eq. (14)), increasing model capacity.
This process is demonstrated in Fig. 1 (b) and (c).

Neighbor Sampling (NS) [7] is a sampling method to facilitate
graph network computation on large graphs. The original graph net-
works, e.g., GCN and GAT, traverse all neighbor nodes to generate
a node embedding, which is time consuming and not tractable for a
very large graph. NS proposes to sample a fixed number (e.g., K ) of
neighbors for each node in forward computation. Combining GCN
and NS as an example

x̃1i = σ (
1
K

∑
j ∈Ñi

w1xj + b1) (20)

where Ñi is drawn randomly from Ni , containing exactly K ele-
ments. NS controls the number of high-order neighbors directly,
thus restrains model’s complexity. There are other sampling meth-
ods, including random walk-based sampling [28], importance sam-
pling [2], etc. In this work, we mainly adopt NS.
1GAT [24] utilizes LeakyReLU transformation before softmax in its original form.
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Table 1: Statistics for the expanded datasets. Note: “entities”
contain both items and non-item entities.

Datasets C-Book Movie-1M A-Book Movie-20M
# users 17,860 6,036 78,809 59,296
# items 14,967 2,445 32,389 11,895

# interactions 139,746 753,772 1,181,684 9,104,038
# entities 77,881 182,011 265,478 64,067
# relations 10 12 22 38
# triples 71,628 923,718 1,551,554 1,195,391

2.3 Integrating Knowledge Graphs
A knowledge graph consists of a large number of entity-relation-
entity triples Gkд = {(h, r , t)|h, t ∈ E, r ∈ R}, where E is the entity
set, R is the relation set. Using the item set V as initial queries,
we can map items to corresponding entities in knowledge graph.
Using the newly added entities as queries, we repeat the expansion
several times and obtain Knowledge-enhanced Interaction Graph
(KIG), G = Gr ec ∪ Gkд . The resulting KIG is shown in Fig. 1 (a).
In KIG, the users’ and items’ neighbors are extended to non-item
entities, e.g., a movie star. We can recklessly replace Gr ec with G

without modifying model architecture.

2.4 Model Overview
The training objective is log loss

L(Y , Ŷ ) = −
∑

yu,v=1
log(ŷu,v ) −

∑
yu,v=0

log(1 − ŷu,v ) + λ∥θ ∥
2
2 (21)

where λ∥θ ∥22 is the L2 regularization term to control overfitting.
We then revisit the whole procedure of KNI as shown in Fig. 1.

(a): with a recommendation dataset and a knowledge graph, we first
build Knowledge-enhanced Interaction Graph (KIG). (b) and (c):
we then apply Graph Neural Networks (GNNs) to propagate high-
order neighborhood information to local neighbors. (d): the user and
item neighborhoods are finally collected to compute Neighborhood
Interactions (NI). The whole model is trained end-to-end with the
loss term presented above.

3 EXPERIMENTS
3.1 Datasets
We adopt 4 recommendation datasets linked to knowledge graphs
in our experiments. Two of the datasets are processed by [26]. Our
processed datasets and experiment code are publicly available2 for
reproducibility and further study.

• C-Book combines Book Crossing3 and Microsoft Satori4,
and is processed by [26].

• Movie-1M combines MovieLens-1M5 and and Microsoft
Satori6, and is processed by [26].

• A-Book combines Amazon Book7 and Freebase [1]. Amazon
Book [8] contains over 22.5 million ratings (ranging from 1

2https://github.com/Atomu2014/KNI
3http://www2.informatik.uni-freiburg.de/ cziegler/BX/
4https://searchengineland.com/library/bing/bing-satori
5https://grouplens.org/datasets/movielens/
6https://searchengineland.com/library/bing/bing-satori
7http://jmcauley.ucsd.edu/data/amazon/

to 5) collected from 8 million users and 2.3 million items. We
link Amazon Book to Freebase with the help of KB4Rec [32].

• Movie-20M combinesMovieLens-20M8 and Freebase.Movie-
Lens-20M contains ratings (ranging from 1 to 5) collected
from the MovieLens website. We process the Movie-20M
dataset with the help of KB4Rec9 [32].

We introduce the processing of A-Book and Movie-20M in the
following. Since A-Book and Movie-20M are originally in rating
format, we follow [26] to convert ratings into binary feedback: 4
and 5 stars are converted to positive feedbacks (denoting by “1”) and
the other ratings to negative feedbacks. For each user, we sample
the same amount of negative samples (denoting by “0”) as their
positive samples from unseen items. We also drop low-frequency
users and items to reduce noise. The threshold is 5 for A-Book and
20 for Movie-20M.

After the datasets are processed, we split each dataset into train-
ing/validation/test sets at 6:2:2. Then we map the items of training
set to corresponding entities in Freebase, where the linkage is stud-
ied and provided by KB4Rec [32]. For each dataset, we use the linked
items as initial queries to find related non-item entities. These en-
tities are added to KIG and used for further expansion. We repeat
this process 4 times to ensure sufficient knowledge is included in
the final dataset. We also remove entities appearing less than 5
times on A-Book (the threshold is 20 for Movie-20M), and relations
appearing less than 5000 times (same for Movie-20M) to guarantee
a good quality. The basic statistics of the 4 datasets are presented
in Table 1.

3.2 Compared Models
We compare our proposed models NI (without knowledge graph)
and KNI (applied on KIG) with 8 feature-based, meta path-based,
and graph-based baseline models. For fair comparison, we extract
neighborhood features for feature-based models, thus all the models
take user-item interactions as well as neighborhood information as
input. Note that all baseline models encounter the early summariza-
tion problem, since none of them consider the interactions between
neighbors and they all compress the neighborhood information
into single user/item representations.

libFM [21] is a widely used feature-based model, and is efficient
and effective in modeling feature interactions. In our experiments,
we concatenate the user ID, item ID, and the average embedding of
related entities learned from TransR [17] as the input to libFM.

Wide&Deep [3] is another feature-based model, which takes
advantages of both shallow models and deep models. We provide
the same input as libFM to Wide&Deep.

PER [29] is a meta path-based model, which builds Heteroge-
neous Information Network (HIN) on side information, and extracts
meta path-based features from HIN. In our experiments, we use all
item-attribute-item relations for PER.

MCRec [10] is a co-attentive model built on HIN. MCRec learns
context representations from meta-paths, and is a state-of-the-art

8https://grouplens.org/datasets/movielens/
9Another dataset LFM in KB4Rec is not included because it follows a quite different
scheme from the others and does not contain any rating or click information.
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Table 2: The results of CTR prediction. Note: “*” indicates the statistically significant improvements over the best baseline,
with p-value smaller than 10−6 in two-sided t-test.

Model C-Book Movie-1M A-Book Movie-20M
AUC ACC AUC ACC AUC ACC AUC ACC

libFM 0.6850 0.6390 0.8920 0.8120 0.8300 0.7597 0.9481 0.8805
Wide&Deep 0.7110 0.6230 0.9030 0.8220 0.8401 0.7684 0.9507 0.8831

PER 0.6230 0.5880 0.7120 0.6670 0.7392 0.6939 0.8161 0.7327
MCRec 0.7250 0.6707 0.9127 0.8331 0.8708 0.7930 0.9558 0.8872
CKE 0.6760 0.6422 0.8974 0.8171 0.8572 0.7839 0.9574 0.8940
DKN 0.6488 0.6333 0.8835 0.8070 0.8455 0.7679 0.9473 0.8787

PinSage 0.7102 0.6477 0.9213 0.8443 0.8634 0.7804 0.9597 0.8960
RippleNet 0.7290 0.6630 0.9210 0.8440 0.8736 0.7975 0.9579 0.8942

NI 0.7468 0.6796 0.9401 0.8679 0.9160 0.8362 0.9693 0.9110
KNI 0.7723* 0.7063* 0.9449* 0.8721* 0.9238* 0.8472* 0.9704* 0.9120*

recommendation model. We follow the released code10 in our ex-
periments.

CKE [30] proposes a general framework to jointly learn struc-
tural/textual/visual embeddings from knowledge graph, texts and
images for collaborative recommendation. We adopt the structural
embedding and recommendation components of CKE.

DKN [27] is another knowledge graph-based recommendation
model. In our experiments, we follow the released code11, and use
pre-trained TransR embeddings as the input for DKN.

PinSage [28] uses GCN for web-scale recommendation. In our
experiments, we use PinSage as a representative GCN approach
and tune different network structures and sampling methods.

RippleNet [26] is a state-of-the-art knowledge graph-based rec-
ommendationmodel. RippleNet uses attention networks to simulate
user preferences on KG. In our experiments, we use RippleNet as a
representative GAT approach, following the released code12.

In summary, we compare with 2 feature-based, 2 meta path-
based models, and 4 knowledge graph-based models, among which,
WIde&Deep, MCRec, PinSage and RippleNet are recently proposed
state-of-the-art models.

3.3 Experiment Setup and Evaluation
We evaluate these models on 2 tasks, click-through rate (CTR) pre-
diction and top-N recommendation. For CTR prediction, we use
the metrics Area Under Curve (AUC) and Accuracy (ACC), which
are widely used in binary classification problems. For top-N rec-
ommendation, we use the best models obtained in CTR prediction
to generate top-N items, which are compared with the test set
to compute Precision@K, Recall@K, and F1@K. We repeat each
experiment 5 times and report the average scores.

General hyper-parameters include learning rate, embedding size,
regularization, etc. Graph-based models, including PinSage, Rip-
pleNet and our models, are trained with graph network modules.
For these models, 2 hyper-parameters are critical, i.e., the hop num-
ber and the sampling method.

A larger hop number indicates a larger neighborhood. In the
graph construction stage, we expand the items 4 times on Freebase,
10https://github.com/librahu/MCRec
11https://github.com/hwwang55/DKN
12https://github.com/hwwang55/RippleNet
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Figure 2: Evaluation stabilizes after sufficient evaluations.

thus an item needs 4 steps to visit certain neighbors. For graph-
based models, we tune the hop number from 1 to 4. Sampling
methods are mainly introduced to speed up training on large graphs,
and sometimes influence model convergence and performance. We
tune neighbor sampling (NS) and random walk-based sampling in
experiments.

We then apply grid search on embedding dimension, learning
rate, l2 regularization, etc., for all the compared models. The hyper-
parameters are chosen according to the AUC scores on validation
sets, and the parameter settings are explained in Section 3.5.

We repeat evaluation several times and use the average scores
to compute the metrics. We perform an empirical experiments to
determine the number of repetitions, shown in Fig. 2. According to
the figure, we conclude the prediction becomes stable after sufficient
evaluations. In the following experiments, we fix this number to 40.

3.4 Experiment Results
In this section, we present and analyze the evaluation results of
CTR prediction (Table 2) and top-N recommendation (Fig. 3, 4, 5,
6). From Table 2 we can observe:

(i) Meta path-based and graph-based models outperform feature-
based models. Among baseline models, MCRec, PinSage and Rip-
pleNet have the best overall performance. A possible reason is that
meta path-based and graph-based models further utilize structural
information in addition to raw features.

(ii) Meta-path design requires much human expertise, and is
not end-to-end. Even though MCRec achieves competitive results
with RippleNet, it requires more efforts to manually design and
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Table 3: Data sparsity statistics and AUC improvements.
Note: The n-hop columns represent the number of n-hop
neighbors. The sparsity is calculated as # missing edges /
# node pairs. The improvements are absolute AUC gains of
KNI compared with best baselines.

Datasets 1-hop 2-hop 3-hop Sparsity Improvement
C-Book 1 58 40 99.97% 4.33%

Movie-1M 14 42,227 35,534 97.45% 2.36%
A-Book 5 17,027 49,419 99.98% 5.02%

Movie-20M 17 40,547 14,966 99.35% 1.07%

pre-process meta-paths. This restricts the application of meta path-
based models on large graphs and scenarios with complex schema.

(iii) High-order neighborhood information contains much more
noise. We increase the hop numbers of different models from 1 to
4, and find performance usually decreases with 3- or 4-hops. We
attribute this problem to the noise brought by the huge amounts of
high-order neighbors (Table 3).

(iv) NI shows significant improvements over baseline models.
To our surprise, NI outperforms PinSage and RippleNet even with-
out knowledge graphs. This means the low-order neighborhood
structures are more valuable than high-order neighborhood infor-
mation. This is consistent with the observation that high-order
neighborhood information is much more noisy. Previous models
pay little attention to neighborhood structures and suffer from the
early summarization problem.

(v) Integrating knowledge graphs, KNI obtains even better results
than NI. Compared with Wide&Deep, MCRerc, PinSage, and Rip-
pleNet, KNI achieves 1.1%-8.4% AUC improvements on 4 datasets.
With these results, we confirm that KNI is an effective end-to-end
knowledge-enhanced recommender system.

(vi) From the data perspective, the 2 book datasets are harder
because of their data sparsity (> 99.9%), according to Table 3. Even
though, KNI achieves better improvements on the 2 book datasets
(4%-5% AUC improvements over best baselines) than the 2 movie
datasets (1%-2% AUC improvements). This means KNI can better
utilize structural information than other graph-based recommender
systems. Thus we conclude that KNI can better alleviate the sparsity
problem.

For the top-N recommendation task, we compare KNI with base-
line models. From Fig. 3, 4, 5, and 6 we can observe:

(i) The top-N recommendation results are consistent with CTR
prediction. Meta path-based and graph-basedmodels perform better
than feature-based models. KNI performs the best.

(ii) On the two book datasets, KNI performs much better than
baselines when K is small, especially in top-1 recommendation.
This indicates that KNI captures user preference very well. On the
2 movie datasets, KNI outperforms state-of-the-art baseline models
by a wide margin.

3.5 Parameter Settings
For hop number, we tune RippleNet following [26], and find Rip-
pleNet performs best with hop=3 (C-Book), hop=2 (Movie-1M),
hop=1 (A-Book and Movie-20M). For PinSage and our models, we
find 1-hop is good enough. After an analysis of the datasets, we

Table 4: Training time of RippleNet and KNI.

Models C-Book Movie-1M A-Book Movie-20M
RippleNet 17.75s 66.85s 120.38s 937.92s

KNI 2.05s 11.58s 21.52s 166.72s

found that the main reason for this problem is the explosive increase
of high-order neighbors. From Table 3 we can see that the average
neighborhood size increases dramatically when it goes from 1-hop
to 2-hop, especially on the 2 movie datasets. This may be caused by
some high degree nodes in the knowledge graph. The noise brought
by the high-order neighbors increases training difficulties. Similar
results can be found in many other studies. For example, [26] shows
that larger hop numbers may decrease model performance. In [23],
the author claims that 1 layer GCN performs the best.

As for the sampling method, we tune NS and random walk-based
sampling on PinSage. We find that random walk-based sampling
does not always produce better results than NS, besides, random
walk-based sampling requires more time. Thus we only apply NS
on the other models. The number of neighbors to be sampled is
tuned from {4, 8, 16, 32, 64, 128} (128 is not applicable on A-Book and
Movie-20M due to memory constraints), and we find 4 (C-Book),
32 (Movie-1M), 8 (A-Book), and 32 (Movie-20M) perform slightly
better. We also test the training speed of RippleNet and KNI. When
fixing the maximum neighbor size to be 32, KNI with NS could
be 5.6-8.6 times faster than RippleNet to train one iteration in the
same GPU environment, shown in Table 4. This result confirms that
the model complexity of KNI (Section 2.4) could be well controlled
through sampling and parallelization.

We perform grid search on the embedding dimension, learning
rate and l2 regularization for each model, and we find that the
embedding dimension 128 is the best of {4, 8, 16, 32, 64, 128} (we
do not try higher dimensions considering the memory size), and
the learning rate 10−3 is generally better than {10−4, 2 ∗ 10−4, 5 ∗
10−4, 2 ∗ 10−3, 5 ∗ 10−3, 10−2} (different models vary slightly), and
we set the L2 regularization differently on different datasets: 10−5
(C-Book), 10−7 (Movie-1M), 10−7 (A-Book), 10−8 (Movie-20M). For
other hyper-parameters provided by open-source softwares, we
tune them carefully in the grid search.

3.6 Case Study
To show the early summarization problem discussed in Section
2.1, as well as to understand how NI model improves other mod-
els, we conduct a case study on in this section. We randomly
choose 10k users, 6k items, and 250k responses from the MovieLens-
20M dataset, and randomly split training/validation/test sets at
6:2:2. We compare attention aggregation model (AAM) (Eq.(10))
and NI (Eq. (14)) solely on the user-item interaction graph. Re-
call the general form of graph-based recommendation models in
Eq. (11), i.e., ŷ = σ (A ⊙ Z). AAM learns the weight matrix A
through user-side and item-side attention networks separately,
i.e., Ai, j = αu,iαv, j , yet NI learns from both sides, i.e., Ai, j = αi, j .

Since the elements inA sum to 1, a weight matrix can be regarded
as a distribution. Thus we can calculate its entropy to quantitatively
measure the information it contains. We calculate the entropy of
the weight matrix A of each test sample and plot the histograms
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Figure 3: Top-N recommendation results for C-Book.
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Figure 4: Top-N recommendation results for Movie-1M.
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Figure 5: Top-N recommendation results for A-Book.
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Figure 6: Top-N recommendation results for Movie-20M.
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Figure 7: Entropy histogram.Note: The x-axis represents the
entropy of attention distribution.

(a) Ai, j of AAM

u3
65

u7
35

u1
74

4
u2

06
7

u2
68

5
u4

20
0

u5
70

8
u7

52
1

u7
81

0
u9

05
4

m531
m552
m711

m1031
m2140
m2622
m2908
m2968
m6942
m7155

m62293
m65135 0.00

0.03

0.06

0.09

0.12

0.15

(b) Zi, j of AAM

u3
65

u7
35

u1
74

4
u2

06
7

u2
68

5
u4

20
0

u5
70

8
u7

52
1

u7
81

0
u9

05
4

m531
m552
m711

m1031
m2140
m2622
m2908
m2968
m6942
m7155

m62293
m65135 0.0

0.8

1.6

2.4

3.2

4.0

(c) Ai, j of NI
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Figure 8: Case study of test case (u46, m3993).Note: In (a)-(d),
the y-axis represents neighbors of user 46, and the x-axis
represents neighbors of item 3993. AAM: attention aggrega-
tion model (Eq. (10)).

of entropy in Fig. 7. The x-axis represents the entropy value, the
larger value it has, the more information it contains. We can see
that the weight matrices in NI model have higher entropy, i.e., more
informative. Besides, the average entropy of GAT is 2.12, and 3.18 for
NI. Considering the significant improvements of NI over RippleNet
(a special case of AAM) in Table 2, these results confirm the early
summarization problem, and our NI model has the capability to
learn more informative neighborhood interactions.

We also randomly select a user-item pair (“u46”, “m3993”) from
the test set and plots the weight matrix A and interaction matrix Z.
We compare AAM and NI in Fig. 8. The x-axis represents the neigh-
bors of item “m3993”, and y-axis for the neighbors of user “u46”. In
user-item interaction graph, users are linked to items with positive
feedbacks. Thus user neighbors are items, and item neighbors are
users. Grids with darker colors have larger values.

We can observe that: (i) Comparing (a) and (c), we find AAM
mainly focuses on a single neighbor “m2140” of the user, while
NI focuses on many more other neighbor pairs. (ii) Comparing (a)

and (b), we find AAM disregards those neighbor pairs with high
interactions, e.g., , (“m552”, “u1744”). While in (c) and (d), we find NI
preserves more neighbor pairs with high interactions. (iii) Checking
in training set, we find the pairs with high interactions in our NI
model, such as (“m7155”, “u1744”), (“m1031”, “u7521”) and (“m2140”,
“u1744”) are positive samples, which should be fully considered in
prediction. Based on the above observations, we conclude AAM
may lose useful information through compressing neighborhood
information into single representation, while NI can preserve more
useful information.

4 RELATEDWORK
Our work is highly related with knowledge-enhanced recommen-
dation, and graph representation models.

4.1 Knowledge-enhanced Recommendation
Traditional recommender systems mostly suffer from several inher-
ent issues such as data sparsity and cold start problems. To address
the above problems, researchers usually incorporate side informa-
tion. The utilization of side information mainly categorizes into 3
groups.

The first is feature-based, which regards side information as
plain features and concatenates those features with user/item IDs
as model input, includingMatrix factorization models [13, 16], DNN
models [6, 19, 20], etc. Feature-based models highly rely on manual
feature engineering to extract structural information, which is not
end-to-end and less efficient.

The second way is meta path-based, which builds heterogeneous
information network (HIN) on the side information. For example,
PER [29] and FMG [31] extract meta path/meta graph-based fea-
tures to represent the connection between users and items along
different types of relation paths. MCRec [10] instead learns con-
text representations from meta paths to facilitate recommendation.
DeepCoevolve [4] further leverages user-item ineteraction network
in sequential recommendation. Though these models are more in-
tuitive, they usually require much expertise in meta-path design,
making them less applicable in scenarios with complex schema.

Compared with the previous 2 ways, external knowledge graph
contains much more fruitful facts and connections about items [1].
For example, CKE [30] proposes a general framework to jointly
learn from the auxiliary knowledge graph, textual and visual in-
formation. DKN [27] is later proposed to incorporate knowledge
embedding and text embedding for news recommendation. More
recently, RippleNet [26] is proposed to simulate user preferences
over the set of knowledge entities. It automatically extends user
preference along links in the knowledge graph, and achieves state-
of-the-art performance in knowledge graph-based recommendation.
The major difference between prior work and ours is that we build
a NI model to learn interactions between user-side and item-side
neighbors from KIG, while prior models mainly focus on enhancing
item representations and neglect potential interactions between
neighbors.

4.2 Graph Representation
Graph representation learning aims to learn latent, low-dimensional
representations of graph vertices, while preserving graph topology
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structure, node content, and other information. In general, there
are two main types of graph representation methods: unsupervised
and semi-supervised methods.

Most of the unsupervised graph representation algorithms focus
on preserving graph structure for learning node representations [5,
18, 22]. For example, DeepWalk [18] uses random walks to generate
node sequences and learn node representations. Node2vec [5] fur-
ther exploits a biased randomwalk strategy to capture more flexible
contextual structures. LINE [22] uses first-order and second-order
proximity to model a joint probability distribution and a conditional
probability distribution on connected vertices.

Another type is semi-supervised models [12, 15, 24]. In this type,
there exist some labeled vertices for representation learning. For
example, LANE [12] incorporates label information into the at-
tributed network embedding while preserving their correlations.
GCN [15] utilizes a localized graph convolutions for a classifica-
tion task. GAT [24] uses self-attention network for information
propagation, which utilizes a multi-head attention mechanism to
increase model capacity. GCN and GAT are popular architectures
of the general graph networks, and can be naturally regarded as
plug-in graph representation modules in other supervised tasks. In
this work, we mainly utilize graph networks to generate structural
node embeddings for KIG.

5 CONCLUSION
In this paper, we review previous graph-based recommender sys-
tems and find an early summarization problem of previous methods.
We extend user-item interactions to neighbor-neighbor interac-
tions, and propose Neighborhood Interaction (NI) to further explore
the neighborhood structures of users and items. Integrating high-
order neighborhood information with Graph Neural Networks and
Knowledge Graphs into NI, we obtain an end-to-end model, namely
Knowledge-enhanced Neighborhood Interaction (KNI). We com-
pare KNI with state-of-the-art models on 4 real-world datasets, and
the superior results of KNI on CTR prediction and top-N recommen-
dation demonstrate its effectiveness. We also provide a case study
to quantitatively measure the early summarization problem. In the
future, a promising direction is extending neighborhood interac-
tions to higher-orders. Another direction is integrating user-side
information in KIG to adapt to more general scenarios.
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