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ABSTRACT

In e-commerce, users’ demands are not only conditioned by their
profile and preferences, but also by their recent purchases that
may generate new demands, as well as periodical demands that de-
pend on purchases made some time ago. We call them respectively
short-term demands and long-term demands. In this paper, we
propose a novel self-attentive Continuous-Time Recommendation
model (CTRec) for capturing the evolving demands of users over
time. For modeling such time-sensitive demands, a Demand-aware
Hawkes Process (DHP) framework is designed in CTRec to learn
from the discrete purchase records of users. More specifically, a
convolutional neural network is utilized to capture the short-term
demands; and a self-attention mechanism is employed to capture
the periodical purchase cycles of long-term demands. All types of
demands are fused in DHP to make final continuous-time recom-
mendations. We conduct extensive experiments on four real-world
commercial datasets to demonstrate that CTRec is effective for gen-
eral sequential recommendation problems, including next-item and
next-session/basket recommendations. We observe in particular
that CTRec is capable of learning the purchase cycles of products
and estimating the purchase time of a product given a user.

CCS CONCEPTS

« Information systems — Recommender systems; - Comput-
ing methodologies — Neural networks;

KEYWORDS

Continuous-Time Recommendation; Long-Short Demands; Demand-
Aware Hawkes Process; Self-Attentive Mechanism

* Both authors contributed equally to this research
T Corresponding author.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.

SIGIR ’19, July 21-25, 2019, Paris, France

© 2019 Association for Computing Machinery.

ACM ISBN 978-1-4503-6172-9/19/07...$15.00
https://doi.org/10.1145/3331184.3331199

675

ACM Reference Format:

Ting Bai, Lixin Zou, Wayne Xin Zhao, Pan Du, Weidong Liu, Jian-Yun Nie,
Ji-Rong Wen. 2019. CTRec: A Long-Short Demands Evolution Model for
Continuous-Time Recommendation. In SIGIR’19: The 42nd International ACM
SIGIR Conference on Research Development in Information Retrieval, July 21-
25, 2019, Paris, France. ACM, NY, NY, USA, 10 pages.
https://doi.org/10.1145/3331184.3331199

1 INTRODUCTION

Recommender systems provide great help for users to find their
desired items from a huge number of offers. So far, the majority
of recommendation models, e.g., collaborative filtering [3, 12, 16]
and sequence-based models [20, 26, 37], have mainly focused on
modeling user’s general interests to find the right products, while
the aspect of meeting users’ purchase demands at the right time
has been much less explored. We believe that a good recommender
system should not only be able to find the right products, but also
recommend them at the right time to meet the demands of users, so
as to maximize their values and enhance the user experiences [9].
Otherwise, one could expect complaints from customers, as a recent
one on Amazon! for always sending her promotion emails on toilet
seat after she bought one? : “Dear Amazon, I bought a toilet seat
because I needed one. Necessity, not desire. I do not collect them. I
am not a toilet seat addict". This problem occurred because the
recommender system inferred that the user is generally interested
in toilet seats due to her recent purchase. But it ignored the fact
that the user’s demand is satisfied when she had bought one, and
the same or similar product should be recommended again only
after the service life of the old one expiring. Without considering
purchase demands, it is difficult to determine the right time for a
recommendation, which may lead to the above toilet-seat situation.
Purchase demands of users are highly time-sensitive: it may be
affected by recent purchases and purchases made some time ago.
In addition, other factors such as item attributes are likely to affect
the purchase demands. All these elements should be taken into
account together with time. To the best of our knowledge, most of
the previous studies mainly focus on the learning of user interests,
and they seldom consider satisfying user demands at proper time
in the final purchase decision.

Uhttps://www.amazon.com/
2 https://twitter.com/GirlFromBlupo/status/982156453396996096
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In this paper, we address this problem by proposing a Continuous-
Time Recommendation model (CTRec) to capture the evolving users’
purchase demands over time. Our model is designed to capture the
complex time-sensitive correlations among items, and to lever-
age such information to better detect the current demand of a
user, so as to make a more accurate prediction at a certain future
time. Inspired by the studies in marketing strategies and human
behaviors [25, 27, 33], we consider two kinds of the time-sensitive
purchase demands: termed as long-term demands and short-term de-
mands. Long-term demands refer to the persistent demands of a user
of the same or similar products [4], e.g., laundry detergent, which
should be recommended regularly to the user according to cer-
tain service time cycle. While short-term demands of products are
strongly related to the products a user purchased recently and can
be observed in a relatively short time in purchase records [38], e.g.,
buying paintbrushes after buying pigments. For modeling such long-
and short-term purchase demands of users, we design a Demand-
aware Hawkes Process (DHP) framework in CTRec to capture the
sequential information in continuous time from the discrete pur-
chase records of users. More specifically, we utilize a convolutional
neural network component to learn the information of associated
items in a short time, and employ a self-attentive component to
capture the long-term purchase cycles of products. The demand-
aware Hawkes process acts as follows: Once a user has purchased
a product, the demand of that product is initialized to a small value,
and the demand for it (or for similar product) increases slowly along
time at a pace depending on the product.

Our CTRec model tries to learn the evolution of user’s demands
over time and estimates the probability of the demand on items at a
given time for the user. We found limited research about continuous-
time recommendation and none of that dealt with user’s demands
in real-world commercial datasets. Our contributions are as follows:

e We propose a novel continuous-time model CTRec for se-
quential recommendation tasks by taking time into account.
A Demand-aware Hawkes Process (DHP) framework is de-
signed for modeling demand evolution in continuous time.
To the best of our knowledge, such demand-aware continuous-
time model has not been explored in real-world commercial
recommendation scenarios.

e We characterize two kinds of user purchase demands: long-
term demands (e.g., repeated purchasing with a persistent
interest) and short-term demands (e.g., buying the comple-
mentary purchasing in a short time period). A convolutional
recurrent neural network and self-attentive components are
integrated in DHP framework to capture the short- and long
demands respectively.

¢ Extensive experiments on four real-world commercial datasets
demonstrate the effectiveness of our continuous-time model
for sequential recommendation, i.e., next-item, next-session
or basket tasks, showing the usefulness of modeling users’
long-short demands evolution on continuous-time. In par-
ticular, our model is capable of learning the purchase cycles
of products and to estimating the real purchase time of a
product given a user.

3We consider next-session and next-basket recommendation as the same sequential
recommendation task due to the fact that both recommend a set of items.
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2 PROBLEM DEFINITION

Assume we have a set of users and items, denoted by U and I respec-
tively. For a user u, his purchase record is a sequence of items sorted
by time, which can be represented as Iy, = {iy,, i, ..., itjs e it }
where it; € Ip, is the item purchased by user u at time ¢;. Each
item i € I has some attributes, e.g., category, denoted as a € A,
where A is the set of attributes. We define the continuous-time
recommendation problem as follows: given the purchase history
Iy, of a user u, we want to infer the probability Pr(iy,, . ) of items
being purchased by user u at a future time t; 4¢:

Pr(it,,.) = F(ie |} ,te), (1)
where tc is the time interval from ¢, to t,, ¢, and ¥ is the prediction
function.

By considering both the order and time interval information
in sequence, we formulate our continuous-time recommendation
problem, ie., {it,ity; .- itys e it,} = it, > as a generalized se-
quential recommendation problem. Both the next-item and next-
session/basket problems, which only consider the ordering relation
of items, can be regarded as specialized cases of continuous-time
recommendation by discretizing time information. The details are
discussed in Sec. 3.5.

3 THE PROPOSED MODEL

We design a Demand-aware Hawkes Process (DHP) framework in
CTRec to capture the sequential information from the discrete pur-
chase records of users. The architecture of our CTRec is shown in
Fig. 1. A convolutional neural network component is utilized to cap-
ture the information of associated items for the short-term demands
and self-attentive cycles component is employed for modeling the
long-term demands.

3.1 General Framework

User’s demands are influenced by the items they have already
bought and the influence evolves as time goes. The influence in
event streams have been studied in [23]: a self-modulating Hawkes
process is utilized to explore the excites or inhabits from previous
events in continuous time. Inspired by [23], we propose a demand-
aware Hawkes process for capturing the complex influence of pre-
vious items on the future demands. It is natural to build such a
continuous-time model due to the fact that users demands are highly
time sensitive: it may be generated by their recent purchases, as
well as the purchases made some time ago, i.e. short- and long-term
demands. An important difference between our work and the event
stream model [23] is that we consider the evolution of two kinds of
demands over time. The incentive effect in the Hawks process may
increase with a certain cyclicality for long-term demands while
decrease in the short-term demands, and such influence cannot be
handled in the simple event streams model [23].

3.1.1  Neural Hawkes Process. Neural hawkes process is a neurally
self-modulating multivariate point process [19]. Given a user u and
the purchase history I , let 1;(t) be the intensity function of an
event i at time point ¢, the probability of occurrence for the new

event i in a small time window [¢,¢ + dt) can be determined by
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Figure 1: An illustration of our self-attentive continuous-time recommendation model (CTRec). CTRec consists of two main
components: a Convolutional Time-Aware LSTM for capturing the short-term influence among items; and an Attentive Cycles
Component for modeling the long-term purchase cycles of items. The influence among items over time is modeled by a Hawkes
process: Red Circle means that item 1 has a positive impact on item 2, while the Black Cross refers to the negative impact of
item 3 and item 4 on item 2 (e.g., Buying cookies (item 1) may increase the probability of buying milk (item 2), while buying
other dairy products such as yogourt (item 3) and powdered milk (item 4) may temporarily decrease the need to purchases

milk); In the Attentive Cycles, a user’s demand of a product,i.e, item 1, follows a certain purchase cycle, e.g., C

Ai(t)de:
Pr(ipyqrlly, ,dt) = Ai(t)dt, (2)
where dt is the interval of the time window.

3.1.2 Demand-Aware Hawkes Process. For modeling the time-sensitive
demands of users, we design a Demand-aware Hawkes Process
(DHP) in CTRec. By characterizing users’ short-term demands of
items as h(t) and long-term demands as &(t), the conditional in-
tensity function A;(¢; 6) can be written as

2i(:0) = f(witem T h(t) +

short-term

iT
wiattrz .3(1‘) n w?serT .u), 3)
S ——

basic demands

long-term

where 0 is the parameters of our model, f : R — R is the trans-
fer function to obtain a positive intensity function, and f(x)
where s is set to 5 in our experiment for the optimal re-

1+exp( )
sults, w” em waltri and wise’ are the learned weights for different

aspects for users’ demands of item i.
The meaning of each module is as follows:

user

. w”emT - h(t) represents the users’ short-term demands of

1tems (i.e., item-level influence) from the historical events.
wattrt T 9(t) emphasizes the influence of long-term de-
mands of items with some common attributes. It is very
common that a user may purchase the similar items (e.g.,
with the same category or brand) rather than exactly the
same one periodically. Hence we consider the attribute-level
influence of items.
o witser T . u refers to users’ base interests of purchasing item
i at any time.
Given the intensity function A; (¢; 0), the probability p;(t; 0) (i.e.,
Pr(i¢ I , At) in Eq. 1) of item i will be purchased at time ¢ can be
represented as:

pi(t;0) = Ai(t;0) exp (— Lt A,—(s;@)ds) , (4)

where t, is the last observed time of purchase history, and s € [to, t].
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and C2.

time time*

As demonstrated in [23
fnext Of item i is:

A +0
thext = f t-pi(t;0)dt

], the expectation next purchase time

®)

In general, the integration does not have analytic solutions, we
estimate the value with the Monte Carlo trick to handle the integral.

3.2 Modeling Short-Term Demands by
Convolutional Time-Aware LSTM

Users’ short-term demands can be regarded as the local sequential
patterns among items within a close proximity of time [32], e.g.,
a user likely buys mouse soon after buying a laptop. For better
capturing the local sequential patterns, we utilize a convolutional
time-aware LSTM for modeling the short-term demands of users.

3.2.1  Convolutional Representation with Local Sequential Patterns.
We represent each item with a convolutional filter of items in a
close time window k [32] (see in right part of Fig. 1). An item iy,
together with the previous k — 1 items, generates a new convolu-
tional representation i*_ For the first k — 1 item, we use fake-items
(i.e., zero vectors) for auto-completion. We utilize multiple window
size, i.e, k € {k1,kz,...,km}, to learn the different local features.
Then we conduct average-pooling on the multi-filter convolutional
representations, the final convolutional vector for item it; is vy,
defined as:

— ky
vy = avg{ltj .

lt, }- (6)

The convolutional vectors of all items can be represented as
v = {vtl, . }. We feed convolutional representations of items
into a time-aware LSTM to capture the evolving for short-term
demands.

3.2.2 Time-Aware LSTM. Traditional Recurrent Neural Networks
(RNN), only consider the sequential order of objects with discrete
time-steps. Inspired by [23], in our work, we utilize a time-aware
LSTM to compose the intensity function of DHP framework over
continuous time. In time-aware LSTM, the input is the convolutional
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representations of items, ie, v = {vy, ... U, }. The hidden state
vector h(t) € RP depends on the vector ¢(t) € RP of memory cells,
which exponentially decays with time interval t — t; at rate 81
toward a steady-state value ¢, as follows:

Crr1 + (kg1 — Chpr) exp (=81 (1 — 1)) (7)
0; ® (20(2¢(t)) — 1), 3)

where t € (tg,t;41], and the elements of ¢(t) will continue to
deterministically decay (at different rates) from ¢y | | towards target
Ch1-

Specifically, ¢y contains the information of user’s previous
actions, and the decay rate &y, reflects the influence of the last
consumed item on recommendations at time ¢. Different form tra-
ditional LSTM, the updates of c¢f 1, €k 41 and 8k 1 do not depend
on the hidden state from last time-step, but rather on its value h(t;)
at time f (after it has decayed for a period of t; — tr_1).

3.3 Modeling Long-Term Demands by
Self-Attentive Mechanism

The previous time-aware LSTM addresses the short-term demands
of items. However, if an item is consumed long time ago, it can
hardly capture the growing influence of demands on the current
purchase via time-aware LSTM. Hence we design a special self-
attentive component for capturing users’ long-term demands. We
assume that the periodical purchase demands of products increases
as the time goes by. Considering that it is very common that a user
may purchase the similar items (items with the same attributes,
e.g., category or brand) rather than exactly the same one periodi-
cally [40], hence we consider the attribute-level attention of items.

Given a user u and an item i; with attribute a; € A at a fu-
ture time ¢. Let D € RIUIXIAIX|4l pe the estimated purchase time
distance matrix of items for all users, dgt,a[j € D be the esti-
mated purchase time distance of the current predicting item i;
and all previous item i;; with attribute a;;. The diagonal values
in matrix D are the learning purchase cycles of products with
corresponding attributes, and the non-diagonal values represent the

purchase time distance of items with different attributes. Let Ay, ,,
*h

be the observed time interval from purchase history between a;
and the most recent purchase of a;;. Intuitively, the greater the
value dy, a;, ~ A (indicating a user had just purchased an
item with attribute a;,), the weaker that user u would purchase the
same or similar item as i £

We define attentive score a;,;; to represents the similarity be-
tween a previous item and the current predicted one, with their
purchase time distance taken into account. The larger attentive
score az,¢; is, the more likely item ¢; may be purchased in the
current time . A modified hinge loss max{0, d% — Azt,atj }is

ar,a;
.

i; computes the original similarity of item
u

u
ag,ag;

utilized to model such long-term influence as follows:

ary; = h(t;)"i; — Alog (max{y, a4 — Ay )

ar,at; ar,at;
h )’
where y > 0, and h(t;)

i; and predicted item i, A is a hyper parameter, and log(max{y, dg, ar;

—AY,. ay, }) is the penalization for long-term demands.
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To take into consideration the influences from all the previous
items, we employ an attention mechanism to dynamically select
and linearly combine different parts of the hidden representation
of input sequence (see Eq. 8) as follows:

st B n exp (Uft,tj) (10)

)h(tj),

J=12g—1 €xp ((xt, ty

where the 3 is the attentive weighted sum of h(t;) for j € [1,n].

3.4 The Loss Function for Optimization

Given the purchase history Ir, = {it,, it,, ..., it;> ..., it, } of a user
u, our goal is to maximize the log-likelihood € of observing items in
I ;‘n, which can be defined as:

n
Z log Pr(iy; |Ig_, Atj),

(1;:0) = 11)
j=1
n tn
- Zloglitj(tj;Q)— > f Aipeg (1)dt, (12)
j=1 inegel ¥ 11
[
purchase non-purchase
n 1 tj
- Z Z mlog)t,—,j (tj;e)—f Aineg (D)1 | .
inegeljzl tjil

where At} def tj — tj_1 is the time interval, and Pr(itj|11j_, At;) is
the probability of item i being purchased at time ¢;. The first term
in Eq. 12 corresponds to the probability of purchase. The second
term represents the probability that the item is not purchased in
the infinitesimally wide interval [¢,¢ + dt). The above formula
is originally proposed in [23]. On can find more details about its
derivation from that reference.

3.5 Relationship with Existing Sequential
Recommendation Tasks

We formulate our continuous-time recommendation as a general-
ized sequential recommendation problem (i.e., {iz,, if,, .., ity sty }
— it,,.): both ordering and time interval information of items
are considered. By discrediting time information, our CTRec can
easily reproduce next-item and next-session/basket recommen-
dation tasks. For the next-session/basket recommendation (i.e.,
{il, 7N § in}

— ipte), We can obtain the most likely purchased item in next-
basket recommendation by

thie

Ai(t;0)
e 2i(t:0)”
When the time intervals for the items in next-session/basket {t, 11—
tnytn+2 — tnt1s - tnte — tnte—1} are set to the real time spans,
our CTRec degenerates to next-session/basket recommendation sce-
nario. For next-item recommendation (i.e., {i1, iz, ...,ij,...,in} —
in+t1), we can simply set € = 1.

(t;0)dt,e e N*.  (13)

inte = arg max;
tn

4 EXPERIMENTS

We evaluate our CTRec model on four real-world datasets. We
compare it to several state-of-the-art sequential models showing
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Table 1: Statistics of the Datasets.

Dataset #Users #Items #Trans. #Category #Co-Pur. #Re-Pur.
Ta-Feng 26,333 23,736 817,741 2,010 217,908 54.85%
Taobao 19,327 27,152 111,523 2,163 9,153 13.95%
Amazon 45,117 90,996 708,587 65 64,375 82.52%
JingDong 456,974 55,071 8,889,653 51 1,654,611 99.88%

the superiority of our model for sequential recommendation tasks,
including next-item and next-session/basket tasks.

4.1 Experimental Settings

4.1.1  Datasets. We experiment with four real-world datasets avail-
able to us: Ta-Feng?, Taobao®, Amazon® and JingDong [43, 44].
The statistics of these four data sets are described in Table 1. Ta-
Feng [37] is a Chinese grocery store transaction data from Novem-
ber 1st, 2000 to February 28th, 2001. Taobao, is a user-purchase data
(only purchase records are utilized) obtained from Taobao platform*.
Amazon [11] is a review dataset, i.e., purchase records are collected
from the product reviews. We use review records in six months
(i.e., from January 1st, 2014 to June 30th, 2014). JingDong contains
the purchase records in a quarterly ( i.e., from October 1st, 2013 to
December 31th, 2013) from one of the largest e-commerce websites
in China. Since it is unreliable to include users with few purchase
times or limited active time for evaluation, we only keep those
whose purchase times are above certain threshold, for example, the
thresholds are set to 5, 5, 20, 10 for the 4 datasets respectively in our
experiments. Different thresholds are used according to the size of
the datasets.

We first study whether short- and long-term purchase behaviors
exist in the datasets. For the short-term purchase patterns, we
calculate the number of two items that co-occur at least twice
within a time window of five items; for the long-term repeated
demands, we calculate the percentage of users who has repurchase
behavior, i.e., at least one item has been repurchase five times. As
shown in Table 1, in the 4 datasets, the number of co-occurred
items (#Co-Pur.) are respectively 217908, 9153, 64375, and 1654611;
the percentages of users with repurchased demands (#Re-Pur.) are
54.85%, 13.95%, 82.52%, 99.88%. The statistics show clearly that
there indeed exist quite a number of co-purchase patterns, and over
50% percentage (except for Taobao dataset) users have repurchase
demands of products. This provides strong evidence in support of
our approach.

4.1.2  Compared Methods. We compare our model with the state-
of-the-art methods from different types of recommendation ap-
proaches, including:

BPR [28]: It optimizes the MF model with a pairwise ranking loss.
This is a state-of-the-art model for item recommendation, but the

sequential information is ignored in this method.

FPMC [29]: It learns a transition matrix based on underlying Markov
chains. Sequential behavior is modeled only between the adjacent

transactions.

4http:/ /www.bigdatalab.ac.cn/benchmark/bm/dd?data=Ta-Feng
5 https://tianchi.aliyun.com/datalab/dataSet html?datald=649
6http:// jmcauley.ucsd.edu/data/amazon/
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RRN ([38]: This is a representative approach that utilizes RNN
to learn the dynamic representation of users and items in recom-
mender systems.

NARM [20]: This is a state-of-the-art approach in personalized
session-based recommendation with RNN models. It uses attention
mechanism to determine the relatedness of the past purchases in the
session for the next purchase. As our datasets do not have explicit
information of sessions, we simulate sessions by the transactions
within each day.

STAMP [21]: STAMP uses a recent action priority mechanism
to simultaneously learn from the users’ general interests and the
current interests.

RMTPP [7]: RMTPP employs a temporal point process as intensity
function, and a recurrent neural network is designed to automati-
cally learn a representation of influence from the event history.
Time-LSTM [45]: It designed specifically time gates within LSTM
to model time intervals in the sequence. It captures users’ short-
term and general interests by the time gates in LSTM.

CTRec: our model CTRec utilizes a demand-aware hawkes process
framework (DHP) to model the purchase sequence in continuous
time. A convolutional neural network and a self-attentive cycles
component is designed in DHP to capture the short- and long-
term demands of users respectively. To verify the effect of different
components, we conduct experiments on the degenerated CTRec
models as follows:

e CTRec (T): Only time interval information is utilized (see
time-aware LSTM in Sec. 3.2). It is equivalent to the neural
Hawkes process model in [23].

o CTRec (S+T): It captures the short-term demands of users
by modeling the local sequence information within a convo-
lutional window.

o CTRec (L+T): A self-attentive mechanism is utilized to cap-
ture the repeated purchase information of long-term de-
mands from whole purchase history.

o CTRec (S+L+T): Our integrated CTRec model for modeling
both short- and long-term demands of users.

The above methods cover different kinds of the approaches in
recommender systems: BPR is a classical method among tradi-
tional recommendation approaches; FPMC is representative meth-
ods which utilize the adjacent sequential information. RRN, NARM
and STAMP are methods using the whole sequential information for
recommendation. RMTPP and Time-LSTM are recent methods in
which time-interval information is considered in RNN. Our CTRec
is a continuous-time demand-aware model: the DHP framework
with two components for long- and short-term demands. Table 2
summarizes the properties of different methods.

4.1.3 Evaluation Metrics. Given a user, we infer the item that the
user would probably buy at a future time. Each candidate method
will produce an ordered list of items, we adopt two widely used
metrics in sequential recommendation tasks: Hit ratio at rank k
(Hit@k) and Normalized Discounted Cumulative Gain at rank k
(NDCG@k). Given the predicted ordered list of items at a certain
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Table 2: Properties of methods. P: personalized? N: deep
neural network model? S: sequential information ? T: time
aware? D: demands aware ?

BPR FPMC RRN NARM STAMP RMTPP Time-LSTM CTRec

O3 wZs
XXX X<
XX 2 X<
XX 2 =<
XX < 2 <
LX<
X2 2 2 2
PSRN
LR L

time point for a user, Hit@k and NDCG@k are defined as

Hit@k = Y I(ic.u), (14)
c=1
NDCG@k = i Lic, u) (15)
@k = = log(c + 1)’

where c is the position of items in the ranking list. I(i¢, u) returns
1if ic was adopted by user u in original dataset, and 0 otherwise.

Recall that the proposed CTRec is a continuous-time model, we
can predict the items being purchased at any feature time. Hence
it would be ideal to evaluate our model in a way consistent with
continuous-time evaluation, i.e. to predict a purchase at any point in
time. However, there are no specific evaluation metric and datasets
for the evaluation scenario. We find that the next-session/basket
recommendation scenario can be seen as a restricted setting: one
session/basket contains a set of discrete time points to be evaluated,
each time point corresponds to an item. We evaluate our candi-
date models at each of those time points separately to simulate our
proposed continuous-time recommendation scenario. For the base-
lines methods which are not time-aware, they can only generate
the same ranking list at any time point, hence we use the average
evaluation results of the same ranking list at each time points as
the final results. We report the average of Hit@k and NDCG@k
at all the time points in one session/basket as the final results. We
consider the top K (i.e, K = 5 and K = 10) items in the ranking
list as the recommended set and report the average of Hit@k and
NDCG@k at all the time points in one session/basket.

4.1.4  Parameter Settings. For each baseline method, grid search is
applied to find the optimal settings. These include latent dimensions
H from {50, 100, 200}, and the learning rate from {0.1,0.01,0.001}.
We report the result of each method with its optimal hyperparame-
ter settings on the validation data. In our CTRec model, we set the
dimensions of latent vector to [50, 50, 100, 200], the window size of
filter is set as [1,3, 5, 10] and learning rate is [0.01,0.01,0.1,0.1]. A
in Eq. 9 is set to 0.1. For all the datasets, in next-item recommenda-
tion task, we take the last item of each user as the target to predict,
the penultimate item as the validation data for model selection. In
next-session task, due to the fact that there do not exist session
partition, we take the last five percent data as the testing session,
the penultimate 5 percent items as the validation data for model
selection, and the remaining part in each sequence as the training
data to optimize the model parameters.
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4.2 Main Results

We present the results of Hit@k and NDCG@k, (i.e., K = 5 and
K = 10) on the next-item, next-session and continuous-time rec-
ommendation tasks in Table 3. The results are quite consistent in
the three tasks. We have the following observations:

(1) BPR performs better than Pop, but is not as good as FPMC,
which uses adjacent sequential information of the transition cubes.
This shows that the local adjacent sequential information is useful
in predicting next-item.

(2) RRN, NARM and STAMP perform better than BPR and FPMC
that do not use neural network (with the exception of RRN model
on Hit@k on Ta-Feng dataset). This suggests that neural network is
more capable of modeling complex interactions between user’s gen-
eral taste and their sequential behavior. NARM and STAMP perform
better than RRN (except for JingDong dataset), with comparable
performance, which may lie in that using of attention mechanism
helps model to capture the current main purpose of users.

(3) The time-aware models, i.e., RMTPP and Time-LSTM, perform
better than the FPMC and BPR, but are less effective than the se-
quential models, i.e., NARM and STAMP without considering time
information. Although RMTPP and Time-LSTM are time-aware
models, both have some limitations: RMTPP focuses on learning an
event representation vector by considering the temporal point pro-
cess from event history; while Time-LSTM modifies different time
gates in LSTM to control the information learned in the next time
step. Both of them are designed to model the event streams to cope
with time-sensitive influence from past history. They do not contain
the useful characteristic of products and user interests, which are
important in e-commerce. The RMTPP model is designed to learn
an event representation, rather than event prediction. Therefore, it
yields a worse performance than Time-LSTM.

(4) Our continuous-time model CTRec significantly outperforms
all the baseline methods on four datasets. Our degenerated model
CTRec(T) performs better than another time-aware model Time-
LSTM. This implies that the time-aware LSTM with a decay rate
over time in our model is more effective than the architecture with
time gate in Time-LSTM. Besides, the degenerated models with
either short-term or long-term demands information, CTRec(S+T)
and CTRec(L+T), are both better than the CTRec(T) that only con-
siders the time information. This indicates that both long-term and
short-term purchase demands are useful in predicting items. Par-
ticularly, comparing CTRec(T) with CTRec(S), it can be observed
that the long-term demands, i.e., purchase cycles of items, is more
powerful for recommendation tasks. Our CTRec(S+L+T) model,
which considers both long- and short-term demands performs the
best, and it significantly outperforms the best baselines.

4.3 Experimental Analysis

4.3.1
our continuous-time model CTRec enables us to learn the purchase
cycles of products. Recall that the purchase time distance tensor D
holds all the estimated purchase time distance among all items with
different attributes. The purchase cycle of a product is the diago-
nal value of the corresponding attribute in purchase time distance
matrix DY for a user u. Here we take the product category as the
target attribute, and conduct experiments on Amazon and JingDong

Attribute-Level Purchase Cycles. As aforementioned in Sec. 3.3,
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Table 3: Performance comparison of different methods.

Datasets Models Next-Item Recommendation Next-Session/Basket Recommendation Continuous-Time Recommendation
Hit@5 Hit@10 NDCG@5 NDCG@10[| Hit@5 Hit@10 NDCG@5 NDCG@10|| Hit@5 Hit@10 NDCG@5 NDCG@10

BPR 0.0539  0.0791  0.0400 0.0480 0.1557 0.2111  0.0629 0.0713 0.0341 0.0240  0.0224 0.0135

FPMC 0.0554 0.0684  0.0400 0.0441 0.1605 0.2093  0.0684 0.0751 0.0356  0.0241  0.0246 0.0144

RRN 0.0546  0.0707  0.0416 0.0466 0.1600 0.2041  0.0633 0.0715 0.0339 0.0227  0.0224 0.0131

NARM 0.0701  0.0944  0.0484 0.0563 0.1756  0.2366  0.0765 0.0863 0.0383 0.0264  0.0271 0.0159

STAMP 0.0656  0.0778  0.0487 0.0520 0.1791 0.2442  0.0807 0.0903 0.0394 0.0277  0.0286 0.0169

Ta-Feng RMTPP 0.0528 0.0575  0.0393 0.0408 0.1628 0.2119  0.0700 0.0773 0.0351 0.0232  0.0246 0.0141

Time-LSTM || 0.0583 0.0723  0.0404 0.0450 0.1618 0.2138  0.0708 0.0803 0.0337 0.0234  0.0239 0.0140

CTRec (T) 0.0628 0.0740  0.0443 0.0478 0.1736  0.2447  0.0716 0.0841 0.0388 0.0277  0.0270 0.0162

CTRec (S+T) || 0.0710 0.0807  0.0577 0.0609 0.1828 0.2535  0.0838 0.0975 0.0400 0.0289  0.0273 0.0165

CTRec (L+T) || 0.0762 0.0836  0.0496 0.0516 0.1921  0.2695  0.0815 0.0985 0.0408 0.0297  0.0270 0.0165

CTRec (S+L+T)[|0.0826* 0.1189* 0.0590* 0.0658* [(0.2075% 0.2785* 0.0907* 0.1050% ||0.0443* 0.0309* 0.0303* 0.0180*

BPR 0.0682 0.0909  0.0474 0.0548 0.2972 03911  0.189%4 0.2182 0.0611 0.0410  0.0423 0.0245

FPMC 0.0752  0.0975  0.0536 0.0607 0.3006 0.3742  0.1989 0.2202 0.0617 0.0388  0.0445 0.0248

RRN 0.0908 0.1085  0.0617 0.0674 03117 0.3865  0.2064 0.2297 0.0645 0.0405  0.0460 0.0257

NARM 0.1020 0.1264  0.0715 0.0795 0.3439  0.4507  0.2095 0.2419 0.0708 0.0472  0.0476 0.0276

STAMP 0.1145 0.1248  0.0676 0.0727 0.3734 0.4820  0.2321 0.2676 0.0773  0.0518  0.0517 0.0301

Taobao RMTPP 0.0867 0.1109  0.0598 0.0678 03297 0.4709  0.2050 0.2499 0.0679 0.0494  0.0455 0.0277

Time-LSTM || 0.0976 0.1064  0.0537 0.0606 0.3321 0.4733  0.1977 0.2421 0.0681 0.0496  0.0448 0.0274

CTRec (T) 0.0993 0.1196  0.0675 0.0741 03534 0.4904  0.2122 0.2539 0.0726  0.0510  0.0474 0.0284

CTRec (S+T) || 0.1147 0.1245  0.0696 0.0766 0.3709  0.5040  0.2281 0.2689 0.0774 0.0539  0.0515 0.0307

CTRec (L+T) || 0.1179 0.1287  0.0742 0.0771 03861 0.5296  0.2339 0.2789 0.0794 0.0556  0.0530 0.0316

CTRec (S+L+T)[|0.1347* 0.1436* 0.0792* 0.0814* [(0.3996* 0.5307* 0.2427* 0.2835% []/0.0821* 0.0557* 0.0543* 0.0319*

BPR 0.0077 0.0130  0.0054 0.0072 0.0388 0.0469  0.0201 0.0221 0.0082 0.0049  0.0056 0.0031

FPMC 0.0084 0.0102  0.0056 0.0061 0.0431  0.0577  0.0226 0.0264 0.0091 0.0061  0.0059 0.0035

RRN 0.0110 0.0122  0.0077 0.0080 0.0549 0.0652  0.0287 0.0314 0.0114 0.0068  0.0075 0.0042

NARM 0.0127 0.0149  0.0082 0.0085 0.0810 0.1043  0.0432 0.0499 0.0173 0.0114  0.0112 0.0065

STAMP 0.0131 0.0176  0.0074 0.0082 0.0828 0.1172  0.0437 0.0534 0.0175 0.0126  0.0114 0.0069

Amazon RMTPP 0.0102 0.0120  0.0061 0.0065 0.0915 0.1338  0.0478 0.0586 0.0190 0.0140  0.0121 0.0075

Time-LSTM || 0.0112 0.0135  0.0070 0.0076 0.0938 0.1177  0.0490 0.0563 0.0197 0.0127  0.0124 0.0071

CTRec (T) 0.0130 0.0160  0.0073 0.0079 0.1073  0.1522  0.0556 0.0689 0.0226 0.0169  0.0140 0.0088

CTRec (S+T) || 0.0135 0.0188  0.0076 0.0088 0.1124 0.1572  0.0580 0.0707 0.0233  0.0167  0.0143 0.0088

CTRec (L+T) || 0.0147 0.0183  0.0066 0.0074 0.1129 0.1480  0.0573 0.0677 0.0236  0.0159  0.0146 0.0087

CTRec (S+L+T)||0.0188* 0.0218* 0.0089* 0.0095* ||0.1243* 0.1778* 0.0620*% 0.0776* ||0.0261* 0.0194* 0.0160* 0.0100*

BPR 0.0341 0.0385  0.0161 0.0177 0.0300 0.0350  0.0101 0.0110 0.0060  0.0035  0.0035 0.0019

FPMC 0.0320 0.1040  0.0162 0.0403 0.0335 0.0440  0.0105 0.0129 0.0067 0.0049  0.0038 0.0024

RRN 0.0385 0.043  0.0169 0.0185 0.0345 0.0730  0.0117 0.0194 0.0071  0.0076  0.0043 0.0035

NARM 0.0500 0.1020  0.0239 0.0400 0.0375 0.0505  0.0094 0.0118 0.0075 0.0051  0.0033 0.0021

STAMP 0.0517 0.0625  0.0265 0.0312 0.0340  0.0430  0.0105 0.0134 0.0079  0.0056  0.0039 0.0025

JingDong RMTPP 0.0395 0.1205  0.0214 0.0472 0.0325 0.0360  0.0152 0.0158 0.0065 0.0036  0.0056 0.0029

Time-LSTM || 0.0560 0.0580  0.0306 0.0313 0.0380  0.0520  0.0099 0.0129 0.0078 0.0054  0.0035 0.0023

CTRec (T) 0.0505 0.0885  0.0276 0.0392 0.0390 0.0540  0.0104 0.0137 0.0082 0.0058  0.0038 0.0025

CTRec (S+T) || 0.0555 0.0870  0.0292 0.0390 0.0430  0.0645  0.0123 0.0170 0.0086 0.0070  0.0045 0.0031

CTRec (L+T) || 0.0575 0.0950  0.0309 0.0426 0.0435 0.0915  0.0142 0.0231 0.0093  0.0099  0.0051 0.0042

CTRec (S+L+T)[|0.0665* 0.1055% 0.0358* 0.0484* [(0.0590%* 0.0845* 0.0213* 0.0265* [|0.0126* 0.0092* 0.0076* 0.0048*

I

datasets’ to get a sense of purchase cycles of products. We present
the average purchase cycles of all users in Fig. 2. An observation is
that the purchase cycles of “Beauty/Makeup” and “Office” products
in Amazon and JingDong datasets have relatively short purchase
cycles, while for “Book” in Amazon and “Health Care Equipment” in
JingDong dataset, the purchase cycles are relatively large. All these

"It is difficult to see without a description of the category information available. For
better explanation, we conduct analysis experiments only on Amazon and JingDong
datasets, in which we can obtain the name of categories rather than an ID in Ta-Feng
and Taobao datasets.
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% ” indicates the statistically significant improvements (i.e., two-sided #-test with p < 0.05) over the best baseline.

make sense since “Book” and “Health Care Equipment” seem far
more durable than the consumption of products in the categories
of “Beauty/Makeup” and “Office”.

More insight can be obtained if more fine-grained categories
(nearly to item-level) are used to observe purchase cycles of prod-
ucts. We will leave this to future work. In our current work, we
utilize the existing categories in the datasets, and give an overall
learning of products purchase cycle in a certain category.
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Purchase Cycles In JingDong

Purchase Cycles in Amazon
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Figure 3: Promotion and inhibition influence among different product categories.

4.3.2  Purchase Dependency among Categories. Purchase demands
of products are also influenced by purchases of other categories.
The dependency between purchases in different categories can be
measured with the non-diagonal elements in purchase time distance
tensor . Given a category c¢my and cp, dc,, ¢, is the purchase
time distance of ¢, after purchasing c;,, hence the promotion or

inhibition score are computed by

Al
S de
dmean = k‘+|k, (16)
—(d, —d
Score(cm,cn) a ( Cm,;Cn mean) , (17)
(k=1 ldep.cn — dmeanl)/|A|

where the smaller the purchase time d,, ¢,,, the greater the promo-
tion score between categories ¢y, and cp,.
A negative score means inhibition influence of ¢, on ¢p, and
a positive value means promotion impact. As shown in Fig. 3, the
color in each cube represents the influence, which is scaled in the
right color bar. Taking the cube with position “Beauty — Electron-
ics" for example, “—" means the influence on “Electronics” after
purchasing “Beauty". We can observe that: the category “Beauty”
and “Electronics” in both Amazon and JingDong datasets inhibits

the purchasing of each other, which may due to the portrait of
adopters, e.g., the makeup products adopter is more likely a women
who maybe somewhat less interested in electronic products.

4.3.3 Repurchase Time Prediction. Given a user, the repurchase
time of items can be computed according to Eq. 5. It’s a item-level
purchase time learned by our model. We first analysis the accuracy
of our model on Amazon dataset. By setting a time window with
a range of window size, i.e., {1 day, 5 days, 10 days, 20 days}, if
the predicted repurchase time falls within the same window as the
real purchase time, we set the accuracy score to 1, otherwise 0. We
present the accuracy of CTRec in Table 4. To make a comparison,
we make a naive prediction: we compute the average of the re-
purchase time of all products (i.e., Avg_time), and predict that all
items are repurchased at the average time. It can be observed that
our model CTRec can make much more accurate predictions than
the method with average time; the comparison with CTRec(T) also
demonstrates the effectiveness of leveraging long- and short-term

demands.
As for “toilet addict case" introduced in Sec 1, we can leverage
two kinds of information to avoid the phenomenon: (1) the average

repurchase time learned by CTRec of the item “ toilet seat cushion”
is 46 days; (2) the purchase cycle of its category “Health & Personal
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Table 4: The Accuracy of Predicting Repurchase Time

Dataset [ Model [ 1Day 5Days 10Days 20 Days
Amazon Avg_Time | 0.0066  0.0407 0.0952 0.2960
CTRec(T) | 0.0115  0.0540 0.1223 0.4470
CTRec 0.0301  0.1409 0.3148 0.7391

Care” in Amazon dataset is 42 days (see in Fig. 2). Both information
indicate reasonable recommendation cycles and can be utilized to
avoid the successive recommendation in a short time.

5 RELATED WORK

Sequential recommender systems have attracted a lot of attention
from the research community and industry. According to the way
they use the time information, we summarize the related methods
of sequential recommender systems as follows.

General Sequential Methods. Many approaches have been pro-
posed to detect the purchase appetites of users and their evolu-
tion over time. They have been applied in different recommenda-
tion scenarios: next-item, next-basket or session-based recommen-
dation tasks. For the next-item recommendation task, sequential-
based approaches directly model the transaction of items in the
sequence [1, 6, 10, 18, 21, 31, 34, 38]. Transaction-based model cap-
tures the short-term interests of users by modeling users as trans-
lation vectors operating on item sequences [10]. To better capture
the short-term interests, convolutional filters are utilized in [32] to
learn local sequential patterns in top-N recommendation. Similarly,
a mixture model with CNN and RNN is used in LSTNet [18] to
extract short-term local dependency patterns and discover long-
term patterns for time series treads. In addition to using RNN to
capture the sequential information, some methods based on se-
quential patterns are also proposed to extract the co-occurrences
(or dependencies) of items or periodical characteristic of item pur-
chases [8, 24, 35, 39]. The next-basket recommendation aims at pre-
dicting a set of items the user could put in his basket [2, 29, 37, 41].
For example, Morkov Chains (MC) based methods, e.g., the Fac-
torizing Personalized Markov Chains (FPMC) [29], the RNN based
models, e.g., Hierarchical Representation Model (HRM) [37]. Session-
based recommendation models [13, 15, 20, 21, 26] are commonly used
to predict web page clicking. This is different from next basket rec-
ommendation in that the order of clicks on items in a session is
also considered. In these models, users’ preference are learned by
the clicked items in the sessions [13, 26]. To make more accurate
prediction, attention mechanism has been utilized in [20, 21] to
capture user’s main interests in the current session. In most of the
above sequential methods, they treat users’ general interests as the
long-term interests, and the dependencies of items in sequence as
the short-term interests. In our CTRec model, in addition to the
above elements, we also capture repeated purchases as the long-
term demands. Moreover, all the previous studies only consider the
sequential order of object, while ignoring the time interval infor-
mation in the sequence. In our study, we showed that this is an
important factor to consider for modeling users’ behavior.

Time-Sensitive Sequential Methods. Some recent studies have
proved that time intervals between users’ actions are of significant
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importance in capturing users’ actions and for which the traditional
RNN architectures are insufficient [14, 17, 22, 30, 36, 42, 45]. For
example, the Time-LSTM model in [45] equips LSTM with time
gates to model time intervals: the specific time gates enables model
capture users’ short-term and long-term interests. Similarly, in
RNN-based next Point-Of-Interest recommendation [42], different
distance gates are designed to control short- and long-term interest
updates. Another way to integrate time interval information is
formulating the dynamic dependence of items in the sequence
as a point process (e.g., Hawkes process), in which the streams
of discrete events in the past are modeled in continuous time [5,
14, 23, 36]. For example, the extended point process model with
a hierarchical RNN architecture in [36] is a session-level model,
which only leverages the time intervals between sessions. Such
session-based model may lose the temporal information within
the session. Besides, with the aim of learning representations of
users and items, the point process can also be utilized to model
dynamic embeddings of users and items from a sequence of user-
item interactions by recurrent model [5, 17]. The most related work
to our model is [23], in which a neural hawkes process model
allows past events to influence the future in complex and realistic
ways, by conditioning future event intensities on the hidden state
of a recurrent neural network. However, with consideration of the
purchase demands of users, the incentive effect may increase with
a certain cyclicality for long-term demands while decrease in the
short-term demands, and such influence cannot be handled in the
simple event streams model in [23].

6 CONCLUSION

In this paper, we argue that meeting users’ purchase demands at
the right time is one of the key factors for e-commerce recommen-
dation, yet has largely been ignored in the literature. We propose a
continuous-time recommendation model based on demand-aware
hawkes process to address user’s long-term and short-term de-
mands adaptively. The proposed model not only is capable of learn-
ing the purchase cycles of products within each category, but also
captures the temporal influence among products in different cat-
egories. Compared with previous methods, the ability of making
accurate prediction on repurchase time enables our model to avoid
the common recommendation failures, such as the case of “toilet ad-
dict case?”. Additionally, the proposed model can be easily adapted
to general sequential recommendation tasks, such as next-item and
next-session/basket recommendation. As the future plan, we will
make more elaborate category classification, so as to conduct more
detailed experiments on capturing and understanding the influence
of the purchase cycles of products on item-level.
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