
Pseudo Dyna-Q: A Reinforcement Learning Framework for
Interactive Recommendation
Lixin Zou

1
, Long Xia

2
, Pan Du

3
, Zhuo Zhang

4
,

Ting Bai
5
, Weidong Liu

1
, Jian-Yun Nie

3
, Dawei Yin

6,∗

1
Tsinghua University, China,

2
York University, Canada

3
University of Montreal, Canada,

4
The University of Melbourne, Australia

5
Beijing University of Posts and Telecommunications, China,

6
JD Data Science Lab, China

{zoulx15,liuwd}@mails.tsinghua.edu.cn,longxia@yorku.ca,zhuo.zhang.cn@gmail.com

baiting@bupt.edu.cn,{nie,pandu}@iro.umontreal.ca,yindawei@acm.org

ABSTRACT
Applying reinforcement learning (RL) in recommender systems is

attractive but costly due to the constraint of the interaction with

real customers, where performing online policy learning through in-

teracting with real customers usually harms customer experiences.

A practical alternative is to build a recommender agent offline from

logged data, whereas directly using logged data offline leads to the

problem of selection bias between logging policy and the recom-

mendation policy. The existing direct offline learning algorithms,

such as Monte Carlo methods and temporal difference methods are

either computationally expensive or unstable on convergence.

To address these issues, we propose Pseudo Dyna-Q (PDQ).
In PDQ, instead of interacting with real customers, we resort to

a customer simulator, referred to as the World Model, which is

designed to simulate the environment and handle the selection

bias of logged data. During policy improvement, the World Model

is constantly updated and optimized adaptively, according to the

current recommendation policy. This way, the proposed PDQ not

only avoids the instability of convergence and high computation

cost of existing approaches but also provides unlimited interactions

without involving real customers. Moreover, a proved upper bound

of empirical error of reward function guarantees that the learned

offline policy has lower bias and variance. Extensive experiments

demonstrated the advantages of PDQ on two real-world datasets

against state-of-the-arts methods.

CCS CONCEPTS
• Information systems → Recommender systems; Personal-
ization; • Theory of computation→ Sequential decision making;

KEYWORDS
Pseudo Dyna-Q, Customer Simulator, Model-Based Reinforcement

Learning, Offline Policy Learning, Recommender Systems

∗
Corresponding author.

Permission to make digital or hard copies of all or part of this work for personal or

classroom use is granted without fee provided that copies are not made or distributed

for profit or commercial advantage and that copies bear this notice and the full citation

on the first page. Copyrights for components of this work owned by others than ACM

must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,

to post on servers or to redistribute to lists, requires prior specific permission and/or a

fee. Request permissions from permissions@acm.org.

WSDM ’20, February 3–7, 2020, Houston, TX, USA
© 2020 Association for Computing Machinery.

ACM ISBN 978-1-4503-6822-3/20/02. . . $15.00

https://doi.org/10.1145/3336191.3371801

ACM Reference Format:
Lixin Zou

1
, Long Xia

2
, Pan Du

3
, Zhuo Zhang

4
, Ting Bai

5
, Weidong Liu

1
,

Jian-Yun Nie
3
, Dawei Yin

6,∗
. 2020. Pseudo Dyna-Q: A Reinforcement Learn-

ing Framework for Interactive Recommendation. In The Thirteenth ACM
International Conference on Web Search and Data Mining (WSDM ’20), Feb-
ruary 3–7, 2020, Houston, TX, USA. ACM, New York, NY, USA, 9 pages.

https://doi.org/10.1145/3336191.3371801

1 INTRODUCTION
Recommender systems have shown its effectiveness and become

more popular for past decades. Recommendation by nature is an

interactive process: a recommendation agent suggests items, based

on customers’ preferences; customers provide feedback on the sug-

gested items; and the agent updates customers’ preferences and

makes further recommendations. Applying reinforcement learn-

ing (RL) to interactive recommendation (e.g., personalized mu-

sic streams in Spotify
1
, product feeds in Amazon

2
, image feeds

in Pinterests
3
) has attracted a lot of interests from the research

community [30, 47, 49]. However, employing RL in real-world rec-

ommender systems still remains challenging. In general, the RL

agents are learned through trial-and-error search, such as Atari

games [22] and AlphaGo [31, 32], where the agents improve policy

via numerous failures before achieving greatest strides. In realistic

recommender systems, directly building a recommender agent from

scratch, which requires the agent to interact with real customers

numerous times, will hurt customer experiences and no customer

would be willing to collaborate for a long time. An alternative is

to make use of the logged data and build a recommender agent in

offline manner before deploying online.

The logged data in offline policy learning are generally used in

two different ways: it can be used in Direct Reinforcement Learning,

which trains the recommendation policy directly using the logged

data (refers to as learning); or it can be used in Indirect Reinforce-

ment Learning, which first builds a simulator to imitate customers’

behaviors and then learns the policy via querying the simulator

(refers to as planning). Current methods of direct reinforcement

learning include Monte Carlo (MC) and Temporal Difference (TD).

Offline MC estimation with importance sampling guarantees an

unbiased estimation, but it suffers from the problem of high vari-

ance. Especially in realistic recommender systems, there are often

millions of candidate items for the recommendation, leading to an

1
https://www.spotify.com/

2
https://www.amazon.com/

3
https://www.pinterest.com/

https://doi.org/10.1145/3336191.3371801
https://doi.org/10.1145/3336191.3371801

extremely large action space and an unbounded importance weight

of training samples. As a result, it requires both large training sam-

ples and computation resources to achieve statistical efficiency in

training. TD-based methods improve efficiency by using the boot-

strapping technique in estimation. However, it is confronted with

another notorious problem called Deadly Triad, that is, the problem
of instability and divergence arises whenever combining function

approximation, bootstrapping and offline training [35] (see the ex-

ample of training divergence in Sec 5.3.1 Figure 4). Unfortunately,

in recommender systems, due to the complexity of modeling cus-

tomer behaviors, most state-of-the-art methods [47, 48] that are

designed with neural architectures, will encounter inevitably the

Deadly Triad problem in offline policy learning.

The indirect reinforcement learning approach using a simulator,

theoretically, does not incur the real-world cost and can provide

unlimited simulated experiences to learn the recommendation pol-

icy. However, building an effective recommendation simulator is in

its own non-trivial problem, which has not been well explored up

to now. Preliminary works on recommendation simulators [28, 47]

typically ignore the selection bias of logged data [29], resulting in a

biased simulator. Moreover, in those existing methods, a simulator

was built before performing policy learning and is kept unchanged

during policy learning, that is, a fixed simulator serves all interme-

diate policies when performing policy improvement. We believe

that the simulator should also be updated constantly, in accordance

with the improved target policies, to obtain the customized optimal

accuracy of the simulation.

To address these issues, inspired by Dyna-Q [23, 34], we inte-

grated learning (direct reinforcement learning) and planning (indi-

rect reinforcement learning) in a unified framework, named Pseudo
Dyna-Q (PDQ). Different from Dyna-Q, the recommendation policy

is trained without the requirement of real customer interactions.

Specifically, we introduce an environment model, referred to as

world model, to simulate the environments and generate simulated

customer experiences in offline policy learning. The policy learn-

ing is then decomposed into two iterative steps: in the first step,

the world model is constantly updated in accordance to current

recommendation policy by de-biasing the selection bias with im-

portance sampling; the second step improves the recommendation

policy with Q-learning, via both the logged data and the world

model (referred to as direct reinforcement learning and planning

respectively). Compared with existing approaches[28, 47], the ad-

vantages of PDQ lie in two aspects: 1) PDQ breaks the Deadly Triad

by employing a world model for planning; 2) the bias induced by

simulator is minimized by constantly updating the world model

and by a direct off-policy learning.

To these ends, our main contributions in this work are as follows:

• We present Pseudo Dyna-Q (PDQ) for interactive recom-

mendation, which provides a general framework that can

be instantiated in different neural architectures, and tailored

for specific recommendation tasks.

• We conduct a general error analysis for the world model and

show the connection of the error and dispersity between

recommendation policy and logging policy.

• We implement a simple instantiation of PDQ, and demon-

strate its effectiveness on two real-world large scale datasets,

showing superior performance over the state-of-the-artmeth-

ods in interactive recommendation.

2 PRELIMINARIES
Online interactive recommendation. In general, we assume a typ-

ical interactive recommendation setting between the customer and

the recommender system – in each interaction, the customer is

recommended an item it ∈ I and provides a feedback ft ∈ F
(i.e.,skipping, clicking or purchase) at the t-th interaction; then

the system recommends new items it+1 for the customer until the

customer leaves the platform. Here, I is the set of candidate items

for recommendation, F is the set of possible feedback. Such an in-

teractive process can be formally formulated as a Markov Decision

Process (MDP).

Given the observation on past interactions st = {u, i1, f1, . . . , it−1,
ft−1} (i.e., the state in MDP with st ∈ S), the recommender is mod-

eled by a conditional distribution π : S × I → R with π (i |st) (i.e.,
the policy in RL community) being probability of recommending

item i at the t-th interaction. The interaction between the customer

and the recommender will generate a recommendation trajectory

as ξ = (s0, i0, r0, . . . , st , it , rt , ..., sT), where rt ∈ R is a reward as-

sociated with customer’s feedback, e.g., a click or a purchase. The

aim of a recommender agent is to learn a policy π for maximizing

the reward values of a trajectory ξ , formulated as:

π∗ = argmaxπ ∈Πη(π). (1)

Here, η(π) is the expected discounted reward by following the

policy π :

η(π) = Eξ∼Pπξ

[T∑
t=0

γ t r (st , it)

]
, (2)

where r (st , it) ∈ [0, rmax] is the reward associated with customer’s

feedback; ξ ∼ Pπξ means that the trajectory is generated by fol-

lowing the recommendation policy π ; γ is hyper-parameter for

discounting the long-term rewards.

Offline learning task. As mentioned earlier, due to the high cost

and risk of deploying an immature recommendation policy, the

offline learning task aims to learn a recommendation policy using a

large logged trajectories to avoid interactions with real customers

online.

Given the logged trajectory data D = {ξ (k)}Nk=1, where ξ
(k) ∼

P
πb
ξ , N is the total number of trajectories in the logged data, the

aim of the offline learning task is the same as that of the online

recommender, as expressed in Equation 1. The difference is that

the trajectories are supposed to be generated independently by

a logging policy πb , i.e. ξ
(k) ∼ P

πb
ξ , instead of being generated

through interactions with real customers, i.e., ξ (k) ∼ Pπξ as in

Equation 2. The offline learning task needs to handle the policy

bias to learn an optimal policy π∗ without interactions with real

customers online.

3 POLICY LEARNING FOR RECOMMENDER
VIA PSEUDO DYNA-Q

The proposed PDQ recommender agent is shown in Figure 1. It

consists of two modules:

• A world model for generating simulated customers’ feedback,

which should be similar to those generated by a real customer

according to the historical logged data.

• A recommendation policy which selects the next item to rec-

ommend based on the current state. It is learned to maximize

the cumulative reward, such as total clicks in a session.

The recommender policy and the world model are co-trained in

an iterative way in PDQ. In each iteration, once the current rec-

ommender policy is set, the world model will be updated accord-

ingly to support it. In turn, the new information gained from the

updated world model will further improve the recommendation

policy through planning. This way, the recommendation policy is

iteratively improved with an evolving world model.

world modellogged data recommendation policy

neural networks

Figure 1: An illustration of Pseudo Dyna-Q Framework.

3.1 World Model Learning
3.1.1 The Error Function. The goal of the world model is to imi-

tate the customer’s feedback and generate the pseudo experiences

as real as possible. As the reward function is associated with a

customer’s feedback, e.g., a click or a purchase, learning the reward

function is equivalent to imitate customers’ feedback. Formally, the

world model can be learned effectively by minimizing the errors

between online and offline rewards:

ℓ(π ;θM) = Err (η(π),η(π ;θM)) (3)

≜ Eξ∼Pπξ

[T−1∑
t=0

γ t∆(rt , rt (θM))

]
,

where η(π) is the expected discounted reward following policy

in real world, while η(π ;θM) is the expected reward of following

π with θM as the parameter in the world model. ∆(·) = δ (·)
K −

1 ∈ [−1, 0] measures the difference between the real reward r (·)
and learned reward r (·;θM) with δ (·;θM) ∈ [0,K] as a scalar loss
function.

Since ξ in the dataset D is generated by logging policy πb , the
objective function can be rewritten as:

θ∗M = argminθM ∈ΘEξ∼Pπξ

[T−1∑
t=0

γ t∆t (θM)

]
= argminθM ∈ΘEξ∼P

πb
ξ

[T−1∑
t=0

γ tω0:t∆t (θM)

]
. (4)

Here, ∆t (θM) is the shorthand for ∆(rt , rt (θM)), ξ is generated by

following logging policy πb , ω0:t ≜
∏t

j=0
π (i j |sj)
πb (i j |sj)

is the impor-

tance ratio to correct the discrepancy between recommendation

policy and logging policy. Accordingly,
ˆθ∗M can be acquired by

solving the sample average approximation:

ˆℓ(π ;θM) =
T−1∑
t=0

γ t ·
1

N

N∑
k=1

ω
(k)
0:t ∆t (θM). (5)

However, this estimator has unbounded variance, since ω
(k)
0:t can be

arbitrarily big when πb ≈ 0, which causes
ˆℓ(π ;θM) to be far away

from the true risk ℓ(π ;θM). This problem can be fixed by “clipping”

the importance sampling weights [16] as:

ˆℓc (π ;θM) =
T−1∑
t=0

γ t ·
1

N

N∑
k=1

min

{
ω
(k)
0:t , c

}
∆t (θM), (6)

where c > 0 is a hyper-parameter chosen to balance the bias and

variance in the estimator, i.e. a smaller value of c means toleration

of a larger bias in the estimator.

3.1.2 The Error Bound and Its Induced Regularizer. The variance
of

ˆℓc (π ;θM) in Equation (6) varies very differently across different

hypothesis. Consider two policies π1 and π2, where π1 is similar to

πb , but π2 is not. Importance sampling gives us lower variance esti-

mates for
ˆℓM (π1;θM), but higher variance estimates for

ˆℓM (π2;θM).
Following the intuition above, we can get the upper bound of the

error function in Equation (7) (the proof is provided in Appendix).

Theorem 3.1. Let ρtπ (s, i) be the probability of arriving at state
s and taking the action i at timestep t when following policy π . De-
fine the divergence between the policy π and πb as Df (π ∥πb) =∑
t γ

tdf

(
ρtπ ∥ρ

t
πb

)
=
∑
t γ

t
[∑
(st ,it) f

(
ρtπ
ρtπb

)
ρtπb

]
, where df (·∥·)

is the f-divergence with f (x) = x2 −x . With probability at least 1−ζ ,
for all θM , we have ℓ(π ;θM) ≤ B, where

B = ˆℓc (π ;θM) +

√
18((1 − γ)Df (π ∥πb) + 1)QθM (n, ζ)

nT
(7)

+
c · 45QθM (n, ζ)

n − 1
,

and QθM (n, ζ) measures the capacity of the reward function family.

The second part of the error bound in Equation (7) indicates that,

in order to tighten the upper error bound, we can force ρtπ and

ρtπb to be as close as possible. We are here unable to intervene ρtπ
directly (which is typically obtained through maximizing η(π ;θM)
in policy learning phase, see in Sec 3.2). Alternatively, we can in-

tervene the reward function r (θM) to force ρtπ to approach ρtπb , as

long as we can find out the relationship among r (θM), ρ
t
π and ρtπb .

The relationship is stated in Lemma 3.2 (the proof is provided in

Appendix).

Lemma 3.2. Assuming that r ′ is the reward function which satisfies
r ′(st , it) ∝ ρtπb (st , it), π

∗ is the optimal policy maximizing η(π) un-
der r ′. For any indicator policy π , we have Df (π ∥πb) ≥ Df (π

∗∥πb).

As stated in Lemma 3.2, the optimal policy π∗ for r (st , it ;θM)
has minimal divergences Df (π

∗∥πb) when the reward r (st , it ;θM)

is proportional to ρtπb (st , it). In other words, the state action pair

(st , it) with high visiting frequency ρtπb should be assigned higher

reward by r (st , it ;θM). This inspires us to add a regularizer inter-

vening the reward function r to force ρtπ to approach ρtπb .

The offline (st , it) are generated by following πb , which follows

the probability of ρtπb (st , it). The regularized error function is:

ℓcr (π ;θM) = Eξ∼P
πb
ξ

[T−1∑
t=0

min {ω0:t , c}γ
t∆t (θM)

]
(8)

+λ
∑
(st ,it)

ρtπb∆(rmax, rt (θM)),

where ∆(rmax, rt (θM)) is the regularizer for encouraging π to visit

(st , it) (heuristically reducing the divergence Df (π ∥πb) in Theo-

rem 3.1). λ is the hyper-parameter that controls the influence of the

regularizer term. Accordingly,
ˆθ∗M can be obtained by solving the

sample average approximation

ˆℓcr (π ; θM) =
T−1∑
t=0

γ t ·
1

N

N∑
k=1

(
min

{
ω (k)
0:t , c

}
∆t (θM) + λ∆t (rmax, r (θM))

)
. (9)

3.2 Policy Learning
We use Q-Learning [22] to improve the recommendation policy via

using the experiences from the world model and via directly using

the logged experiences. In each time-step t of recommendation, the

recommender agent observes the state of customer st , and chooses

the item it to recommend using an ϵ-greedy policy (i.e.,with prob-

ability 1 − ϵ selecting the max Q-value action, with probability ϵ
randomly choosing an action) w.r.t. the approximated value func-

tion Q(s, i;θQ), which can be customized for specific recommenda-

tion tasks. The agent then receives the response r (st , it ;θM) from
world model and updates the state to st+1. Finally, we store the

experience (st , it , rt , st+1) in a large replay bufferM from which

samples are taken in mini-batch training. The cycle continues until

the customer leaves the platform.

We improve the value function Q(s, i;θQ) by adjusting θQ to

minimize the mean-square loss function, defined as follows:

ℓ(θQ) = E(st ,it ,rt ,st+1)∼M
[
(yt −Q(st , it ;θQ))

2
]

(10)

yt = rt + γ max

it+1∈I
Q(st+1, it+1;θQ),

where yt is the target value based on the optimal Bellman Equa-
tion [35]. By differentiating the loss function w.r.t. θQ , we arrive at

the following gradient:

∇θQ ℓ
(
θQ

)
= E(st ,it ,rt ,st+1)∼M

[
(r + γ max

it+1
Q
(
st+1, it+1;θQ

)
−Q

(
st , it ;θQ

))
∇θQQ

(
st , it ;θQ

)]
(11)

In fact, the policy learning maximizes the η(π ;θM) of the world
model, where the regularization in Equation (9) is actually conveyed

in θQ .
Finally, we implement an interactive training procedure, as shown

in Algorithm 1, where we specify the order in which they occur

within each iteration.

4 AN INSTANTIATION OF PSEUDO DYNA-Q
We have described a general framework of PDQ. In this section,

we present a simple instantiation of the framework. Note that the

proposed framework is not limited to the instantiation we describe

here. More sophisticated designs of state representation, world

Algorithm 1: The training of Pseudo Dyna-Q.

Input: D, ϵ ,L,K
Output: M (s, i ; θM), Q (s, i ; θQ)

1 Randomly initialize parameters θQ , θM ← Uniform(−0.1, 0.1);

2 # Pretraining the world model.
3 for j = 1 : K do
4 Sample random mini-batches of (st , it , rt , st+1) from D;

5 Set ft according to rt ;
6 Set et according to st+1 ;
7 Update θM via mini-batch SGD w.r.t. the loss in Equation (9);

8 end
9 # Iterative training of world model and Q-value network.;

10 repeat
11 for j = 1 : N do
12 # Sampling training data by querying the world model.
13 e = False;

14 sample a initial customer u from customer set;

15 initialize s = {u };
16 while e is False do
17 sample a recommendation i by ϵ -greedy w.r.t Q-value;

18 execute i ;
19 world model responds with f , e ;
20 set r according to f ;
21 set s ′ = s ⊕ {i, r };
22 store (s, i, r, s ′) in bufferM;

23 update s ← s ′;
24 end
25 # Adding logged data to the training samples.
26 Sampling (s, i, r, s ′) from D, and storing in bufferM;

27 # Updating the Q-value network.
28 for j = 1 : L do
29 Sample random mini-batches of training (st , it , rt , st+1) from

M;

30 Update θQ via mini-batch SGD w.r.t. Equation (11);

31 end
32 # Updating the world model.
33 for j = 1 : K do
34 Sample mini-batches of (st , it , rt , st+1) from D;

35 Set ft , et according to rt , st+1 ;
36 Update θM via mini-batch SGD w.r.t. the loss in Equation (9);

37 end
38 end
39 until convergence;

model and Q-value network could be used, according to the specific

recommendation tasks. As shown in Figure 2, the instantiation

of Pseudo Dyna-Q contains three parts: (a)The state tracker for

tracking current customer’s preferences, e.g. encoding both the

long-term and temporary interests into a dense state representation

st ; (b) The Q-value Network for predicting the Q-value of the policy;
(c) The world model for generating pseudo customer’s feedback.

4.1 State Tracker
RNN is often used to keep track of the states. In reality, customers’

current interests are often related to the earlier items in addition

to the recent ones, and RNN-based methods are unable to cope

with such long term dependency. Recent works on memory net-

work and self attention show effectiveness on this issue [20, 33, 41],

and we here adopt such a design. Given the observation st =
{u, i1, f1, . . . , it−1, ft−1}, the entire set of {i j } are converted into

embedding vectors {i j } of dimension H by embedding each i j in
a continuous space, which, in the simplest case, is an embedding

matrix A (of size I × H). To represent the feedback information

Embedding A ∈ RI×H

Embedding B ∈ RF×H×H

×Projection

feedbacks

{cj}

actions (items)

{ij}

ij

Fj

if,j

inner prodcut

Embedding

C ∈ RI×H

Softmax

Weighted Sum

action

it

st

user

u

⊕

Embedding

U ∈ RU×H

Concat

State Tracker

State Tracker

for World Model
Predicted

terminate e

Predicted

feedback c

World Model

State Tracker

for Q-value Network

Predicted

Q-value Q

Q-value Network

(b) (c)

(a)

wq

Wf

we

Wc

φ(st, it)

Contextual feature

φ

φ

φ

Figure 2: The neural architecture of PDQ. (a)The state tracker
maintains customer’s preferences with a memory network
and self-attention mechanism; (b)The Q-value Network pre-
dicts the Q-value by the inner product between tracked cus-
tomer’s preferences and a weight vector; (c)The world model
generates customer’s feedback with a multi-head MLP.

into item embedding, we project {i j } into a feedback-dependent

space by multiplying the embedding with a feedback-dependent

projection matrix as follows:

ifj , j = Ffj i j , (12)

where Ffj ∈ R
H×H

is a projection matrix for a specific feedback

fj . In the embedding space, we compute the match score between

the recommendation embedding it and each memory cell ifj , j by
taking the inner product followed by a softmax:

α j = Softmax(i⊤t ifj , j), (13)

where Softmax(zj) =
exp(zj)∑
l exp(zl)

, it is the embedding of recommen-

dation. Defined in this way, α is a probability vector over the inputs.

Finally, the state st is formed by concatenating customers’ embed-

ding u ∈ RU and α weighted sum of inputs as:

st =

u,
t−1∑
j=0

α jifj , j

 , (14)

where [·, ·]means concatenation operation. Given it, the contextual

feature for decision making is formulated as:

ϕ(st , it) =Wc [st , it] + bc , (15)

whereWc and bc are the weight and bias terms.

4.2 The Q-value Network
The approximation of Q-value is accomplished by the inner prod-

ucts of the dense state embedding with a weight vector as follows:

Q(st , it ;θQ) = w
⊤
q ϕ(st , it) + bq . (16)

Table 1: Statistics of the datasets.

Dataset #Customers #Items #

Total

Behaviors

#

Behaviors

per Customer

#

Behaviors

per Item

Taobao 986,240 4,161,799 100,144,665 101.5419 24.0628

Retailrocket 81,620 103,873 948,537 11.6214 9.1317

Here,wq and bq are the weight vector and bias terms. The update

of Q-value network follows the Equation (11).

4.3 The World Model
As mentioned in Section 3.1, the world model imitates the cus-

tomer’s behaviors and provides the reward function for policy

learning, where the reward function is determined by two parts: 1)

the customer’s feedback (i.e.,clicked or not); 2) customer’s leaving

(i.e.,not leaving means more future reward). Therefore, the world

model uses the st and it as input and generates customer’s response

ft and a binary variable et , which indicates whether the session

terminates. This generation is accomplished using the world model

M(s, i;θM) (shown in Figure 2(c)) as follows:

ft = Softmax(Wf ϕ(st , it) + bf), (17)

et = Sigmoid(w⊤e ϕ(st , it) + be), (18)

whereWf , bf , we and be are the weights and bias. Figure 2 is a

multi-task neural network that combines two classification tasks

of simulating ft and et , respectively. The parameter θM is thus

updated by setting δt in Equation (9) with cross-entropy as:

δt (θM) = ft log ft (θM) + et log et (θM) + (1 − et) log(1 − et (θM)). (19)

5 EXPERIMENTS
In this section, we perform empirical evaluations of our proposed

PDQ on two large collections of real-world customer logs extracted

from e-commerce platforms. The source code can be found at

Github: https://github.com/zoulixin93/pseudo_dyna_q.

5.1 Experimental Settings
Dataset. We adopt the following two public datasets in our ex-

periments.

• Taobao4: Taobao is the largest E-commerce platform in China.

Taobao dataset contains a subset of customer behaviors including

click, purchase, adding item to shopping cart and item favoring

from November 25, 2017 to December 03, 2017.

• Retailrocket5: Retailrocket is a dataset collected from a real-

world ecommerce website over a period of 4.5 months, which

contains customers behaviour data (i.e. events like “clicks”, “add

to carts” and “transactions”).

Detailed statistic information, including the number of customers,

items and behaviors, of these datasets is given in Table 1.

Baselines. We compare our model with the state-of-the-art base-

lines, including both supervised learning based methods and rein-

forcement learning based methods.

4
https://tianchi.aliyun.com/datalab/dataSet.html?dataId=649

5
https://www.kaggle.com/retailrocket/ecommerce-dataset/home

https://github.com/zoulixin93/pseudo_dyna_q

• BPR [26]: It optimizes the matrix factorization model with a

pairwise ranking loss. This is a popular method for item recom-

mendation. However, it ignores the sequential information of

recommendation and cannot optimize the long-term reward in

recommendation.

• FPMC [27]: It learns a transition matrix based on underlying

Markov chains. Sequential behaviors are modeled only between

the adjacent transactions.

• GRU4Rec [17]: This is a representative approach that utilizes

RNN to learn the dynamic representation of customers and items

in recommender systems.

• NARM [20]: This is a state-of-the-art approach in personalized

trajectory-based recommendation with RNN models. It uses at-

tention mechanisms to determine the relatedness of the past

purchases in the trajectory for the next purchase.

• DQN-R [48]: It is an elegant and concise off-policy reinforcement

learning method, which has been employed for sequential e-

commerce recommendation in [48].

• DDPG-KNN [11]: DDPG is an actor-critic, model-free framework.

In [11], it has been adapted for discrete recommendation by

combining DDPG with an approximate KNN method.

• PDQ: Our PDQ model that utilizes a world model to imitate

customer’s feedback and learns an offline policy by combining

planning and direct RL. To verify the effect of different compo-

nents, we also test the following degenerated PDQ models:

– PDQ(N): The naive PDQ, which separately optimizes the world

model and recommendation policy and does not handle the

distribution mismatch between the logging policy and recom-

mendation policy.

– PDQ(IM): It iteratively trains theworldmodel and offline policy,

and employs clipping importance sampling to deal with the

mismatch between logging policy and recommendation policy.

– PDQ(IM+R): Our integrated PDQ(IM+R) model, which regu-

larizes the generalization error by minimizing the distribution

divergence between the logging policy and recommendation

policy.

Parameter Setting. The state tracker has one hidden layer and

200, 100 hidden units for Taobao and Retailrocket respectively. All

the baseline models share the same layer and hidden nodes con-

figuration for the neural networks. ϵ-greedy is always applied for

exploration but discounted with increasing training epoch. The

value c for clipping importance sampling is set 5. We set the dis-

count factor γ = 0.9. The buffer size of M is set as 10000. The

target value function is updated at the end of each epoch. In each

epoch, the mini-batch size is 256. The networks are trained with

SGD [3] with a learning rate of 0.005. Unless otherwise specified,

the hyper-parameter λ for regularization is 0.01. We used Tensor-

Flow to implement the pipelines and trained networks with an

Nvidia GTX 1080 ti GPU cards. All the experiments are obtained

by an average of 5 repeat runs.

5.2 Online Testing Experiments
5.2.1 Simulation Setting. To perform evaluation of RL methods

on ground-truth, a straightforward way is to collect a large logged

dataset and evaluate the learned policy through online A/B test,

which, however, could be too expensive and commercially risky

for the platform. Similar to [5, 11, 28], we demonstrate how the

proposed method would perform on a real world recommender

system by constructing a simulated customer model utilizing data

from Taobao and Retailrocket. Without loss of generality, we re-

gard the “clicks”, “add to carts”, “transactions” as positive feedback
(clicks) and assume a standard rank-H -restricted matrix factor-

ization model [26] Pr (click|u, i) = Sigmoid

(
u⊤u ii

)
for customers’

clicks, where uu , ii ∈ RH are the latent factors learned by fitting

Taobao and Retailrocket dataset through BPR-MF. The ranking H
for Taobao and Retailrocket are set as [100, 50], learning rate is

[0.1, 0.1], and the maximum iteration is 2000 before convergence.

Apart from the feedback, we need to simulate customers’ pa-

tience on the platform – when to end the trajectory after losing

patience. Similar to [11], we assume that the ending probability

is correlated with customers’ feedback. In other words, if the pre-

sented item is accepted then the trajectory has a small ending

probability; if the item is not accepted then the trajectory has a

higher ending probability. However, this assumption is not good

enough for building a real customer simulator, since under this as-

sumption, the learned policy could repeatedly recommend similar

items, which may annoy customers. For this reason, we further

assume that the ending probability is also related to the diversity of

recommended items (i.e. diverse recommendations are more attrac-

tive to customers [9]). Formally, based on the intuitions, the ending

probability for a trajectory is set as:

Pr (ending|u, i0, i1, . . . , it) = 1 −

Pr (click|u, it)Sigmoid

©­« 2

t · (t − 1)

∑
m,k ∈{1,2, ...,t }

entropy(im , ik)
ª®¬ ,

where entropy(im , ik) =
∑H
j=1 im, j log

im, j
ik, j

measures the distance

between itemm and item k .

5.2.2 Evaluation Setting. The principle of our evaluation is to

recover the real offline learning and recommendation scenario.

To this end, we first sample 9.8M and 891k trajectories as the

training dataset from the simulators built using Taobao and Re-

tailrocket datasets. Here, the logging policy πb is set as πb (i |s) =

Softmax(
u⊤u ii
τ), where τ is the temperature to control the perfor-

mance of logging policy. In real learning tasks, πb should not be too

random because online platforms usually spend a lot of effort in de-

signing their recommender systems to satisfy customers’ demands.

Therefore, we set the τ = 5, to ensure a medium level logging pol-

icy. After that, we train the model using the offline trajectories and

evaluate the learned policies on the simulator.

5.2.3 Main Results. Results by an average of 5 repetitive exper-

iment runs are obtained and we report the three metrics in Table 2

and Figure 3. For each recommendation agent, we report its results

in terms of the average clicks per trajectory (Clicks), average di-

versity of recommendations (Diversity) and the average number of

interactions (Horizons) [11, 23], which measure the goodness of the

whole trajectory recommendations. Figure 3 shows the learning

curves on average clicks per session of different kinds of recom-

mendation agents on these two datasets. From Table 2 and Figure

3, we have following observations:

Table 2: Performance comparison of different recommendation agents on offline learning tasks.

Agents

Taobao Retailrocket

Epoch=1000 Epoch=10000 Epoch=20000 Epoch=1000 Epoch=10000 Epoch=20000

Clicks Diversity Horizon Clicks Diversity Horizon Clicks Diversity Horizon Clicks Diversity Horizon Clicks Diversity Horizon Clicks Diversity Horizon

BPR 1.3344 0.0002 1.8328 1.8664 0.0003 1.9072 1.8433 0.0004 1.8948 1.4949 0.0007 1.8293 1.8055 0.0006 1.8937 1.8013 0.0008 1.8967

FPMC 1.8227 0.0424 2.0910 1.8428 0.0443 2.1170 1.8394 0.0441 2.0903 1.8361 0.0782 2.3712 1.8327 0.0501 2.2040 1.8127 0.0405 2.1505

GRU4Rec 1.4264 0.0866 2.2773 1.8852 0.0475 2.1290 1.8421 0.0435 2.0985 1.7380 0.1168 2.4046 1.9460 0.0867 2.3776 1.9272 0.0831 2.3629

NARM 1.2532 0.1107 2.3587 1.9921 0.0884 2.4386 1.9926 0.0747 2.3483 1.8785 0.0854 2.3901 2.0716 0.1001 2.5663 1.9466 0.0867 2.4410

DQN-R 1.9598 0.2583 3.3379 0.8777 0.0008 1.7068 0.8810 0.0006 1.7117 1.8861 0.1344 2.7174 1.5397 0.0727 2.2252 0.6040 0.0005 1.6368

DDPG-KNN(k=1) 0.8695 0.0004 1.6852 0.8662 0.0006 1.6830 0.8678 0.0004 1.6997 0.5924 0.0009 1.6262 0.6251 0.0006 1.6449 0.5957 0.0008 1.6274

DDPG-KNN(k=0.1N) 2.0815 0.0314 2.1111 0.8722 0.0519 1.7013 0.8745 0.0007 1.7079 2.0502 0.0876 2.3329 1.4256 0.0433 2.0099 0.6050 0.0017 1.6375

DDPG-KNN(k=N) 1.9928 0.0269 2.0815 0.8645 0.0219 1.6869 0.8624 0.0157 1.6899 1.5953 0.0457 2.0977 1.0083 0.0223 1.8384 0.8942 0.0008 1.7740

PDQ (N) 1.7909 0.2405 3.1165 2.1217 0.3111 3.5264 1.7830 0.2491 3.1420 1.3420 0.1002 2.3881 2.0193 0.1164 2.7436 2.2471 0.1373 2.9560

PDQ (IM) 1.8862 0.2558 3.1255 2.4326 0.3733 3.9725 2.5801 0.3285 3.8945 2.2351 0.1056 2.7528 2.2478 0.1431 3.0465 2.6020 0.1442 3.2629

PDQ (IM+R) 1.8855 0.2232 2.9952 2.5885∗ 0.4206∗ 4.2816∗ 2.7998∗ 0.4182∗ 4.3168∗ 2.4424∗ 0.1358∗ 2.9854∗ 2.9920∗ 0.2117∗ 3.5191∗ 2.8131∗ 0.1988∗ 3.5036∗

“ ∗ ” indicates the statistically significant improvements (i.e. two-sided t -test with p < 0.01) over the best baseline.

ҁE��5HWDLO5RFNHWҁD��7DREDR

(IM) (IM+R)

Figure 3: Learning curves of PDQ agents and baseline mod-
els.

(1) We observed that non-RL methods (i.e. BPR), compared with

RL methods, are very stable but at a lower performance level in

the offline learning task. This is because they mainly focus on

the item-level performance, and are unable to improve the overall

performance on trajectory level. Intuitively, diversity is an implicit

metric that can improve the horizon of interactions, which is helpful

to improve the overall clicks. However, compared with PDQ, non-

RL methods’ performances on diversity are bad because they can

not optimize the overall clicks in a long-term view and repeatedly

recommend similar items for customers.

(2) Directly applying off-policy RL methods on offline training

will result in the failure of the learned policy. Figure 3 shows that

DQN-R and DDPG-KNN can improve the clicks at the beginning

but rapidly degrade after several rounds of training. Additionally,

based on the results in Table 2, the actor of DDPG-KNN(1) (i.e.

purely depending on the actor-network for the recommendation)

does not work at all. This phenomenon has been referred to as

the well-known Deadly Triad Problem in the community, which

indicates the intrinsic failure caused by the explosion of Q-value

during the training process.

(3) By addressing the selection bias problem through learning a

simulator, the proposed PDQ(IM+R) agents consistently outperform

baselines with a statistically significant margin.

ҁE��5HWDLO5RFNHWҁD��7DREDR

(IM) (IM+R)

Figure 4: The average Q-value of different recommendation
agents.

5.3 Analysis
In this section, we further analyze the effectiveness of the proposed

framework for the offline recommendation task based on the two

datasets.

5.3.1 The Deadly Triad in Recommendation. As previously men-

tioned, directly deploying TD based methods may not be safe in

offline training tasks (i.e. the headache of Deadly Triad
3
). To study

the problem of Deadly Triad in the recommendation, the average

Q-value over training epochs (averaged over 5 repeat experiments)

has been shown in Figure 4. We can see that: (1) the Q-value of
DQN-R and DDPG-KNN (0.1N) are not stable in offline training.

The Q-value of DQN-R quickly blows up after several iterations.

DDPG-KNN’s Q-value seems stable in the beginning but it also

changes to infinity at a certain point. This phenomenon may be

caused by the difference in estimating the next state value between

these twomethods. In DQN-R, the maximal next Q-valueQπ (st ,at)
is chosen for TD estimation. However, in DDPG-KNN, the sam-

pling action valueQπ (st ,at) is used. The max operation accelerates

the blow-up of Q-value. (2) Compared with directly learning an

offline policy, PDQ can effectively solve this problem by building a

world model bridging the gap between offline and online training.

In Figure 4, the Q-value of PDQ converges to a stable value at the

end.

(a) Influence of regularizer weight on Taobao Dataset.

(b) Influence of regularizer weight on Retailrocket Dataset.

Figure 5: The influence of regularize weight on perfor-
mance.

ҁE��5HWDLO5RFNHWҁD��7DREDR

Figure 6: Learning curves of DQN with Memory Network
and GRU Network.

5.3.2 Influence of Regularizer Weight. We investigate how the

performance varies w.r.t. the regularizer weight λ in Equation (8).

The Clicks, Diversity, and Horizons are shown in Figure 5 with

different λ ranging from 0.001 to 1. The experimental results demon-

strate that if the regularizer is too large, it will hurt performance. On

the contrary, a too-small regularizer will have a limited influence

on the variance of the learned world model, which is consistent

with our intuition about the regularizer.

5.3.3 The Effectiveness of State Tracker. We propose a memory-

based neural architecture to track customers’ interests in the interac-

tive recommendation. To verify its effectiveness, we train two online

DQN agents on the simulator with different state tracker: one with

our proposed memory-based state tracker, named DQN(MEM); The

other DQN(GRU) employs GRU as function approximation, which

has been widely used in recommendation tasks [17, 20]. Figure 6

presents the learning curve on two datasets. DQN(MEM) performs

better than DQN(GRU), which suggests that the proposed memory

and self-attention based state tracker is more capable of modeling

complex interactions than GRU as function approximation.

6 RELATEDWORK
Recommender systems have attracted a lot of attentions from the

research community and industry. Being supervised by the history

records is the common practice in majority models, including tradi-
tional factorization methods [4, 14, 19, 25], deep neural models, such
as multilayer perceptron [8], denoising auto-encoders [44], convo-

lutional neural network (CNN) [2, 38], recurrent neural network

(RNN) [13, 15, 20, 43], memory network [7] and attention architec-

tures [1, 6]. Based on the partial observed history dataset, these

existing models usually predict a customer’s feedback by a learn-

ing function to maximize some well-defined evaluation metrics in

ranking, such as Recall, Precision and NDCG [10]. However, most

of them are myopic because the learned policies are greedy with

estimating customers’ feedback and unable to optimize customers’

feedback in the long run.

Recently, reinforcement learning-based approaches have attracted
a lot of attention in recommender systems. The core idea of RL

models is learning an effective policy to maximize the expected

reward in the long run. The most common approach is learning

the policy by learning empirical rewards from interaction with

real customers, e.g. contextual bandit (i.e. 1-horizon MDP) based

recommender methods [21, 24, 42, 45], Markov Decision Process

(MDP) based recommendation methods [5, 11, 46–51]. Contextual

bandit models handle the notorious explore/exploit dilemma in

online environment for the cold start problem; while MDP based

methods design different neural network architectures to extract

interactive information from customer status. Due to the fact that

learning a policy online by interacting with real customers may

lead to poor customer experiences [37]. Hence the most common

way is to utilize the history data to train an offline policy, which

enables the recommender system to get past its blundering stage

in an offline environment without putting anyone in an unfriendly

experience.

The offline policy learning, which is a tempting challenge, has at-

tracted great interest in RL community to design stable and efficient

learning algorithms. Algorithms in existing models can be classified

intoMonte Carlo (MC) and temporal-difference (TD) methods. Due to

the efficiency problem ofMC, its usage has been limited to off-policy

evaluation [12, 18, 39]. As for TD, it has a black cloud, i.e. deadly

triad
3
, hanging over its head. Current solutions for Deadly Triad

are limited to linear function approximation, such as GTD2 [36]

and GRetrace(λ) [40]. However, none of them can be applied to

complex function approximation, i.e. neural networks.

7 CONCLUSION
In this work, we investigated offline policy learning in recommender

systems, which is usually more practical than online policy learning

in practice. An offline policy learning strategy—Pesudo Dyna-Q

(PDQ) was proposed for interactive recommendation. PDQ per-

forms offline policy learning through both model-based indirect

and direct offline learning, where the world model is introduced to

simulate the environments and assist TD-based policy improvement.

We also provided a general error analysis of the world model’s risk

function, and based on the analysis, the world model is designed

to keep adaptively optimized for specific recommendation policies,

during policy learning. The TD based Q-Learning in offline set-

ting is hence able to prevent from instability of convergence, and

perform policy improvement effectively, via both logged experi-

ences and querying the simulator. Extensive experiments on two

real world large scale datasets showed that the instantiated PDQ

based on neural networks outperforms state-of-the-art methods

noticeably.

REFERENCES
[1] Ting Bai, Jian-Yun Nie, Wayne Xin Zhao, Yutao Zhu, Pan Du, and Ji-Rong Wen.

2018. An attribute-aware neural attentive model for next basket recommendation.

In SIGIR’18. ACM, 1201–1204.

[2] Ting Bai, Lixin Zou, Wayne Xin Zhao, Pan Du, Weidong Liu, Jian-Yun Nie,

and Ji-Rong Wen. 2019. CTRec: A Long-Short Demands Evolution Model for

Continuous-Time Recommendation. In SIGIR’19. ACM, 675–684.

[3] Léon Bottou. 2012. Stochastic gradient descent tricks. In Neural networks: Tricks
of the trade. Springer, 421–436.

[4] Shiyu Chang, Yang Zhang, Jiliang Tang, Dawei Yin, Yi Chang, Mark A Hasegawa-

Johnson, and Thomas S Huang. 2017. Streaming recommender systems. In

WWW’17. 381–389.
[5] Haokun Chen, Xinyi Dai, Han Cai, Weinan Zhang, Xuejian Wang, Ruiming Tang,

Yuzhou Zhang, and Yong Yu. 2018. Large-scale Interactive Recommendation with

Tree-structured Policy Gradient. arXiv preprint arXiv:1811.05869 (2018).
[6] Weijian Chen, Yulong Gu, Zhaochun Ren, Xiangnan He, Hongtao Xie, Tong Guo,

Dawei Yin, and Yongdong Zhang. 2019. Semi-supervised user profiling with

heterogeneous graph attention networks. In IJCAI’19. AAAI Press, 2116–2122.
[7] Xu Chen, Hongteng Xu, Yongfeng Zhang, Jiaxi Tang, Yixin Cao, Zheng Qin, and

Hongyuan Zha. 2018. Sequential recommendation with user memory networks.

In WSDM’18. ACM, 108–116.

[8] Heng-Tze Cheng, Levent Koc, Jeremiah Harmsen, Tal Shaked, Tushar Chandra,

Hrishi Aradhye, Glen Anderson, Greg Corrado, Wei Chai, Mustafa Ispir, et al.

2016. Wide & deep learning for recommender systems. In Proceedings of the 1st
Workshop on Deep Learning for Recommender Systems. ACM, 7–10.

[9] Peizhe Cheng, Shuaiqiang Wang, Jun Ma, Jiankai Sun, and Hui Xiong. 2017.

Learning to recommend accurate and diverse items. In WWW’17. 183–192.
[10] Charles LA Clarke, Maheedhar Kolla, Gordon V Cormack, Olga Vechtomova,

Azin Ashkan, Stefan Büttcher, and Ian MacKinnon. 2008. Novelty and diversity

in information retrieval evaluation. In SIGIR’08. ACM, 659–666.

[11] Gabriel Dulac-Arnold, Richard Evans, Hado van Hasselt, Peter Sunehag, Timothy

Lillicrap, Jonathan Hunt, Timothy Mann, Theophane Weber, Thomas Degris, and

Ben Coppin. 2015. Deep reinforcement learning in large discrete action spaces.

arXiv preprint arXiv:1512.07679 (2015).
[12] Mehrdad Farajtabar, Yinlam Chow, and Mohammad Ghavamzadeh. 2018. More

Robust Doubly Robust Off-policy Evaluation. ICML’18 (2018).
[13] Yulong Gu, Zhuoye Ding, Shuaiqiang Wang, and Dawei Yin. 2020. Hierarchical

User Profiling for E-commerce RecommenderSystems. In WSDM’20. ACM.

[14] Patrik O Hoyer. 2004. Non-negative matrix factorization with sparseness con-

straints. Journal of machine learning research 5, Nov (2004), 1457–1469.

[15] Chao Huang, Xian Wu, Xuchao Zhang, Chuxu Zhang, Jiashu Zhao, Dawei Yin,

and Nitesh V Chawla. 2019. Online Purchase Prediction via Multi-Scale Modeling

of Behavior Dynamics. In SIGKDD’19. ACM, 2613–2622.

[16] Edward L Ionides. 2008. Truncated importance sampling. Journal of Computa-
tional and Graphical Statistics 17, 2 (2008), 295–311.

[17] Dietmar Jannach and Malte Ludewig. 2017. When recurrent neural networks

meet the neighborhood for session-based recommendation. In RecSys’17. ACM,

306–310.

[18] Nan Jiang and Lihong Li. 2015. Doubly robust off-policy value evaluation for

reinforcement learning. ICML’15 (2015).
[19] Yehuda Koren, Robert Bell, and Chris Volinsky. 2009. Matrix factorization tech-

niques for recommender systems. Computer 8 (2009), 30–37.
[20] Jing Li, Pengjie Ren, Zhumin Chen, Zhaochun Ren, Tao Lian, and Jun Ma. 2017.

Neural attentive session-based recommendation. In CIKM’17. ACM, 1419–1428.

[21] Lihong Li, Wei Chu, John Langford, and Robert E Schapire. 2010. A contextual-

bandit approach to personalized news article recommendation. In WWW’10.
ACM, 661–670.

[22] Volodymyr Mnih, Koray Kavukcuoglu, David Silver, Alex Graves, Ioannis

Antonoglou, Daan Wierstra, and Martin Riedmiller. 2013. Playing atari with deep

reinforcement learning. arXiv preprint arXiv:1312.5602 (2013).
[23] Baolin Peng, Xiujun Li, Jianfeng Gao, Jingjing Liu, Kam-Fai Wong, and Shang-Yu

Su. 2018. Deep Dyna-Q: Integrating Planning for Task-Completion Dialogue

Policy Learning. ACL’18 (2018).
[24] Lijing Qin, Shouyuan Chen, and Xiaoyan Zhu. 2014. Contextual combinatorial

bandit and its application on diversified online recommendation. In SDM’14.

SIAM, 461–469.

[25] Steffen Rendle. 2010. Factorization machines. In ICDM’10. IEEE, 995–1000.
[26] Steffen Rendle, Christoph Freudenthaler, Zeno Gantner, and Lars Schmidt-Thieme.

2009. BPR: Bayesian personalized ranking from implicit feedback. InUAI’09. AUAI
Press, 452–461.

[27] Steffen Rendle, Christoph Freudenthaler, and Lars Schmidt-Thieme. 2010. Factor-

izing personalized markov chains for next-basket recommendation. In WWW’10.
ACM, 811–820.

[28] David Rohde, Stephen Bonner, Travis Dunlop, Flavian Vasile, and Alexandros

Karatzoglou. 2018. RecoGym: A Reinforcement Learning Environment for the

problem of Product Recommendation in Online Advertising. RecSys’18 (2018).
[29] Tobias Schnabel, Adith Swaminathan, Ashudeep Singh, Navin Chandak, and

Thorsten Joachims. 2016. Recommendations as Treatments: Debiasing Learning

and Evaluation. In ICML’16. 1670–1679.
[30] Guy Shani, David Heckerman, and Ronen I Brafman. 2005. An MDP-based

recommender system. Journal of Machine Learning Research 6, Sep (2005), 1265–

1295.

[31] David Silver, Aja Huang, Chris J Maddison, Arthur Guez, Laurent Sifre, George

Van Den Driessche, Julian Schrittwieser, Ioannis Antonoglou, Veda Panneershel-

vam, Marc Lanctot, et al. 2016. Mastering the game of Go with deep neural

networks and tree search. nature 529, 7587 (2016), 484.
[32] David Silver, Julian Schrittwieser, Karen Simonyan, Ioannis Antonoglou, Aja

Huang, Arthur Guez, Thomas Hubert, Lucas Baker, Matthew Lai, Adrian Bolton,

et al. 2017. Mastering the game of Go without human knowledge. Nature 550,
7676 (2017), 354.

[33] Sainbayar Sukhbaatar, JasonWeston, Rob Fergus, et al. 2015. End-to-end memory

networks. In NIPS’15. 2440–2448.
[34] Richard S Sutton. 1991. Dyna, an integrated architecture for learning, planning,

and reacting. ACM SIGART Bulletin 2, 4 (1991), 160–163.

[35] Richard S Sutton and Andrew G Barto. 2018. Reinforcement learning: An intro-
duction. MIT press.

[36] Richard S Sutton, Hamid R. Maei, and Csaba Szepesvári. 2009. A Convergent O(n)

Temporal-difference Algorithm for Off-policy Learning with Linear Function

Approximation. In NIPS’09. 1609–1616.
[37] Adith Swaminathan and Thorsten Joachims. 2015. Counterfactual risk minimiza-

tion: Learning from logged bandit feedback. In ICML’15. 814–823.
[38] Jiaxi Tang and Ke Wang. 2018. Personalized top-n sequential recommendation

via convolutional sequence embedding. In WSDM’18. ACM, 565–573.

[39] Philip S Thomas, Georgios Theocharous, and Mohammad Ghavamzadeh. 2015.

High-Confidence Off-Policy Evaluation.. In AAAI’15. 3000–3006.
[40] Ahmed Touati, Pierre-Luc Bacon, Doina Precup, and Pascal Vincent. 2017. Con-

vergent tree-backup and retrace with function approximation. ICML’17 (2017).

[41] Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones,

Aidan N Gomez, Łukasz Kaiser, and Illia Polosukhin. 2017. Attention is all

you need. In NIPS’17. 5998–6008.
[42] Huazheng Wang, Qingyun Wu, and Hongning Wang. 2017. Factorization Bandits

for Interactive Recommendation.. In AAAI’17. 2695–2702.
[43] Zihan Wang, Ziheng Jiang, Zhaochun Ren, Jiliang Tang, and Dawei Yin. 2018. A

path-constrained framework for discriminating substitutable and complementary

products in e-commerce. In WSDM’18. ACM, 619–627.

[44] Yao Wu, Christopher DuBois, Alice X Zheng, and Martin Ester. 2016. Collabo-

rative denoising auto-encoders for top-n recommender systems. In WSDM’16.
ACM, 153–162.

[45] Chunqiu Zeng, QingWang, ShekoofehMokhtari, and Tao Li. 2016. Online context-

aware recommendation with time varying multi-armed bandit. In SIGKDD’16.
ACM, 2025–2034.

[46] Xiangyu Zhao, Long Xia, Jiliang Tang, and Dawei Yin. 2019. Deep reinforcement

learning for search, recommendation, and online advertising: a survey by Xiangyu

Zhao, Long Xia, Jiliang Tang, and Dawei Yin with Martin Vesely as coordinator.

ACM SIGWEB Newsletter Spring (2019), 4.
[47] Xiangyu Zhao, Long Xia, Liang Zhang, Zhuoye Ding, Dawei Yin, and Jiliang

Tang. 2018. Deep Reinforcement Learning for Page-wise Recommendations. In

RecSys’18. ACM, 95–103.

[48] Xiangyu Zhao, Liang Zhang, Zhuoye Ding, Long Xia, Jiliang Tang, and Dawei

Yin. 2018. Recommendations with Negative Feedback via Pairwise Deep Rein-

forcement Learning. In SIGKDD’18. ACM, 1040–1048.

[49] Guanjie Zheng, Fuzheng Zhang, Zihan Zheng, Yang Xiang, Nicholas Jing Yuan,

Xing Xie, and Zhenhui Li. 2018. DRN: ADeep Reinforcement Learning Framework

for News Recommendation. In WWW’18. 167–176.
[50] Lixin Zou, Long Xia, Zhuoye Ding, Jiaxing Song, Weidong Liu, and Dawei Yin.

2019. Reinforcement Learning to Optimize Long-term User Engagement in

Recommender Systems. In SIGKDD’19. ACM, 2810–2818.

[51] Lixin Zou, Long Xia, Zhuoye Ding, Dawei Yin, Jiaxing Song, and Weidong Liu.

2019. Reinforcement Learning to Diversify Top-N Recommendation. In DAS-
FAA’19. Springer, 104–120.

	Abstract
	1 Introduction
	2 Preliminaries
	3 Policy Learning For Recommender via Pseudo Dyna-Q
	3.1 World Model Learning
	3.2 Policy Learning

	4 An Instantiation of Pseudo Dyna-Q
	4.1 State Tracker
	4.2 The Q-value Network
	4.3 The World Model

	5 Experiments
	5.1 Experimental Settings
	5.2 Online Testing Experiments
	5.3 Analysis

	6 Related Work
	7 Conclusion
	References

