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ABSTRACT
Multi-Task Learning (MTL) has attracted increasing attention in
recommender systems. A crucial challenge in MTL is to learn suit-
able shared parameters among tasks and to avoid negative transfer
of information. The most recent sparse sharing models use inde-
pendent parameter masks, which only activate useful parameters
for a task, to choose the useful subnet for each task. However, as all
the subnets are optimized in parallel for each task independently,
it is faced with the problem of conflict between parameter gradient
updates (i.e, parameter conflict problem). To address this challenge,
we propose a novel Contrastive Sharing Recommendation model in
MTL learning (CSRec). Each task in CSRec learns from the subnet
by the independent parameter mask as in sparse sharing models,
but a contrastive mask is carefully designed to evaluate the contri-
bution of the parameter to a specific task. The conflict parameter
will be optimized relying more on the task which is more impacted
by the parameter. Besides, we adopt an alternating training strategy
in CSRec, making it possible to self-adaptively update the conflict
parameters by fair competitions. We conduct extensive experiments
on three real-world large scale datasets, i.e., Tencent Kandian, Ali-
CCP and Census-income, showing better effectiveness of our model
over state-of-the-art methods for both offline and online MTL rec-
ommendation scenarios.

CCS CONCEPTS
• Information systems→ Recommender systems; • Comput-
ing methodologies→ Neural networks.
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1 INTRODUCTION
Multi-Task Learning (MTL) is an active research topic in recent
studies on recommender systems [7, 23, 24, 42, 44]. Several tasks
such as the Click Through Rate (CTR) and Click Conversion Rate
(CVR) of users are relevant to RS, and can be optimized together in
a single MTL model, so that a task can leverage the useful knowl-
edge learned from other tasks. However, as the tasks are different,
there are risks that noise information is brought in from other
tasks, resulting in the degeneration of the performance in target
task. Hence, a crucial challenge in MTL is to learn the the suitable
shared knowledge and to avoid the negative transfer problem, i.e.,
transferring unrelated information from a task to another.
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Figure 1: Illustration of how contrastive learning process
helps solve the parameter conflict problem during multi-
task training. The blue color represents that the gradient of
parameters in task A and B is in the same direction, while
the red color represents parameter conflict problem, where
a parameter has different directions of the gradient in differ-
ent tasks. The gray color represents the contrastive param-
eter (e.g., set the value 1 to 0 in parameter mask), leading
to the decrease of performance on each task. The conflict
parameter will be updated by relying more on the task to
which the parameter contributes more (i.e., ∆B > ∆A ).

Usually, MTL models share information by sharing learning pa-
rameters. Existing MTL models can be generally classified into
four categories according to the sharing strategy: hard sharing,
expert sharing, soft sharing, and sparse sharing MTL approaches.
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Figure 2: The illustrate of different kinds of MTL models. Blue rectangles represent shared layers, green and orange icons
represent task-specific layers/ parameter masks respectively.

As shown in Fig 2, hard sharing approaches [5] share the bottom
information and stack a task-specific layer to optimize each task.
The same parameter space shared by all tasks may limit the capa-
bility of the model to deal with the noise information from other
unrelated tasks. Expert sharing models [26, 39] use multiple ex-
perts to extract different information from the shared bottom layer,
and design task-specific gates to learn the useful information for
each task. The multiple expert networks can be partially shared
between different tasks, which may alleviate the negative transfer
problem to some extent, but all parameters are still fully shared for
a specific expert. Soft sharing approaches [19, 33] build the models
separately for different tasks and access the information of other
tasks by computing the related weights or attention mechanisms.
A key drawback of these approaches is the large parameter space
for different tasks, making them computationally expensive. Re-
cently, sparse sharing approaches [25, 37] have been proposed to
address this problem. Rather than using an extra parameter space,
they connect two sub-networks from the shared parameter space
by independent parameter masks with binary variable. Each task
extracts the related knowledge for its own subnet with neural net-
work pruning techniques, so as to avoid the parameter explosion
problem.

However, we find that the existing sparse sharing models may
still suffer from the negative transfer problem. That is, when sub-
nets are optimized in parallel independently, the updates of the
parameters in MTL learning phase may disagree as their gradients
may differ. This is shown in Fig. 1 (a), where the gradients of one
of the parameters are in opposite directions for Task A and Task B.
The existing sparse sharing approaches may sum them up, which
may hurt some of the tasks (e.g. Task B in Fig. 1). To address this
problem, we propose a novel Contrastive Sharing Recommenda-
tion model in MTL learning (CSRec). The main idea is to detect
the impact of the parameter on different tasks. The update of the
parameter will rely more on a task on which the parameter has
more impact.

For the parameter conflict problem shown in Fig. 1 (b), we es-
timate ∆A and ∆B – the performance degeneration of task A and
B due to the contrastive parameter. If the degeneration on Task
B is larger, i.e., ∆B ↓> ∆A ↓, the parameter is considered to be
more impactful on Task B than on Task A. Then the conflict pa-
rameter will be updated by relying more on the task B. In so doing,

we aim to update the parameter in a direction that improve the
global optimization aim. Besides, an alternating training strategy is
used to optimize the learning process, which makes it possible to
self-adaptively update the conflict parameters by a fair competition
among the irrelevant tasks. We equip each parameter subspace with
a carefully designed negative subnet, and construct the contrastive
loss function in a unsupervised manner. By doing that, our model
has the ability to effectively learn the useful information and allevi-
ate the negative transfer among different tasks. Our contributions
are as follows:
• We design a novel contrastive sharing MTL model CSRec,
which is effective and efficient, producing better performance
with less parameters.
• We propose an alternating training process with contrastive
learning to solve the parameter conflict problem in MTL,
enabling it to flexibly learn the relatedness knowledge among
tasks, while avoiding the transfer of negative information.
• Extensive experiments on three large scale real-world rec-
ommendation datasets, i.e., Tencent Kandian, Ali-CCP and
Census-income, show significant improvements of our pro-
posed model on MTL recommendation scenarios. Besides,
The online improvements on Tencent Kandian platform are
1.34% and 2.34% in CTR and read time prediction tasks re-
spectively, which are great improvements over the SOTA
MTL models.

2 THE CONTRASTIVE SHARING MODEL
In this section, we first briefly introduce the architecture of CSRec,
then give detail explanations of our proposed contrastive sharing
networks.

2.1 The General Framework of CSRec
As shown in Fig. 3, CSRec consists of three components – input
module, contrastive sharing networks and task tower module.
Input Module. The input module is responsible for processing and
feeding the input data from both sparse and dense fields into the
contrastive sharing network module. The features from all fields
are connected to obtain the unified representation vector of the
origin input data, denoted as xo ∈ Rh .
Contrastive SharingNetworks. The contrastive sharing networks
is the key module in CSRec. We design parameter masks to select
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Figure 3: The overview of our propose framework. The contrastive sharing network is partially shared among different tasks
via corresponding parameter masks, which generate different sub-networks. A simple base MLP example and corresponding
contrastive sharing network are illustrated where shared neurons and weights are colored in blue.

useful information for each task. We adopt multilayer perceptron
(MLP) to extract the knowledge from xo . Assuming the parameter
space of the MLP is Θ = {Θ1,Θ2, ...,Θl }, where Θl is parameters
in lth layer of MLP. For a task t , its parameter mask, denoted as Mt ,
has the same size as Θ and is composed of binary values. Only the
useful information is extracted from xo as follows:

xt = FMLP (xo ;Mt ⊙ Θ), (1)

where xt is the vector from the last layer of MLP component, and it
extracts the useful information for task t . FMLP is theMLP function,
and ⊙ is the element-wise product to filter the useful parameters.

Each task in this module extracts the proper information xt by
the learned parameter mask Mt . We will introduce the details of
the mask learning and contrastive training process in Sec. 2.2.
Task Tower Module. The task-specific tower network is a fully
connected network, which is responsible for making prediction of
the task label after the contrastive sharing network module. For a
task t , the label yt is predicted by:

yt = G(xt ), (2)

where G is the prediction function, e.g., yt = w⊤xt + b, where w
is the transfer matrix, and b is the bias.

2.2 Contrastive Sharing Networks
In this section, we first introduce the two components, i.e., alternat-
ing parameter mask learning and contrastive pruning, which work
together to optimize the learning process in our contrastive sharing
networks. Then the detail explanations of our training process is
presented in Algorithm 1.

2.2.1 Alternating Parameter Mask Learning. Each task in CSRec
learns its own subnet by the independent parameter mask, in which
only the useful information is activated by the binary variable. Our
method is inspired by the neural network pruning technique [36],
which is supported by the Lottery Ticket Hypothesis [12], that

dense, randomly-initialized neural network contains sub-networks
that guarantee the same test accuracy as the original network
through training models in isolation. We propose a contrastive
pruning strategy (see Sec. 2.2.2) to learn from mask distinctiveness
and generate the subnet for each task during the alternating train-
ing procedure. Different from sparse sharing model [36], which
uses the independent parallel training method, we adopt alternat-
ing training strategy to address the parameter conflict problem.
We go through each task in turn, and all tasks are optimized al-
ternately. The parameter mask is updated until the loss function
converges. The alternating training process enables our model to
self-adaptively update the shared parameters according to all the
tasks by a fair competition way, and make the optimization of the
shared parameters relying more on the task which is more impacted
by the parameter.

2.2.2 Contrastive Pruning Process. To solve the parameter conflict
problemwithin the alternate training process, we design contrastive
learning strategy [8] to update the parameters synchronously. The
core idea of contrastive pruning is to test if the model performs
better on positive data (mask) than any negative samples. The larger
the difference, the more impactful the corresponding parameter.

Given a task t , the parameter mask Mt is learned by optimizing
its label yt . We denote the observed data as (Mt ,yt ), and the noise
data as (M′t ,yt ), where M

′

t can be generated by any contrastive
strategy [6]. For example, we can randomly reverses the parameter
mask (i.e., transfer the binary value 1 to 0, otherwise 0 to 1) with
different random sampling ratio.

Given the estimated conditional probabilitiesp(yt |Mt ) andp(yt |M
′

t ),
the contrastive loss is formulated as:

Lossc = loss(p(yt |Mt )) − loss(p(yt |M
′

t )), (3)

where loss(p(yt |Mt )) and loss(p(yt |M
′

t )) are the original loss func-
tion on positive and noise data respectively. Take the classification
task for example, the following widely used cross entropy loss
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function can be used:

loss(p(yt |Mt )) = −
∑

yt loд(p(yt |Mt )). (4)

Following the practice in contrastive learning [14], we adopt the
log loss function defined as:

lossr (p(yt |Mt )) = siдmoid{ln[loss(p(yt |Mt ))]}. (5)

Then, the final contrastive loss function is:

Lossc = lossr (p(yt |Mt )) − lossr (p(yt |M
′

t )). (6)

By minimizing the contrastive loss function, the parameters of
the subnets are optimized. The more a parameter contributes to the
contrastive loss, the more it will impact the update.

Algorithm 1 Contrastive Sharing MTL Learning
Require: Base MLP network s , pruning rate α , minimal sparsity

ϵ , iterative times z.
1: Randomly initialize Θs to Θ

(0)
s ;

2: for t = 1, ...,T do
3: Initialize parameter mask Mz

t ∈ {0, 1} |Θs | , where z = 1.
4: end for
5: for t = 1, ...,T do
6: Select a random mini-batch data x for task t .
7: Generate the unique subnet st (x;Θst ) = s(x;Mz

t ⊙ Θs ) for
task t .

8: Generate contrastive parameter mask M
′z
t for task t by the

contrastive strategies based onMz
t ,

9: Generate the contrastive subnet s′t (x;Θs ′t
) = s(x;M′zt ⊙ Θs )

for task t .
10: Update the parameters Θt of subnet st (x;Θst ) by taking a

gradient step to optimize contrastive loss in Eq 6.
i.e., Lossc = lossr (p(yt |Mt )) − lossr (p(yt |M

′

t ))

11: Prune α percent of the remaining parameters with the lowest
magnitudes from Θst . Let Mz

t [j] = 0 if Θst [j] is pruned.
12: if | |Mt | |0

| |Θs | |
≤ ϵ then

13: Reset Θs to Θ
(0)
s and go to step 6.

14: else
15: The parameter mask for task t are Mz

t .
16: The subnet for task t are st (xo ;Θst ) = s(x0;Mz

t ⊙ Θs ).
17: Let z ← z + 1.
18: end if
19: end for
20: return xt = st (xo ;Θst )|t = 1, 2, ...,T .

2.2.3 The Algorithm of CSRec. CSRec uses contrastive pruning
strategy to address the parameter-level conflict problem among
different tasks. The training process is shown in Algorithm 1.

Firstly, we adopt a common MLP network s to extract the infor-
mation from input vector xo . The parameter space for s is Θs , and
it is randomly initialized. Given a task t , the binary parameter mask
Mt ∈ {0, 1} |Θs | is initialized randomly, where |Θs | is the size of
the parameter space in MLP network. For a task t , the parameters
for the subnet st is computed by using the binary mask matrix Mt

Table 1: Statistics of datasets.

Datasets Train samples Test samples Feature num
Tencent 74.3 million 10.6 million 36
Ali-CCP 42.3 million 43.0 million 23

Census-income 199,523 99,762 40

to select from Θs in the base MLP network. In this way, each task
can obtain its unique subnet represented as:

st (xo ;Θst ) = s(xo ;Mt ⊙ Θs ). (7)

Then, the contrastive activation mask M
′

t for each task is gener-
ated by the contrastive strategy based on activation mask Mt . That
is, each task can also obtain its contrastive subnet represented as:

s
′

t (xo ;Θs ′t
) = s(xo ;M

′

t ⊙ Θs ). (8)

For all the task, we can obtain the task-specific subnet st and con-
trastive subnet s′t . Then we train all tasks alternately to optimize
the contrastive loss in Eq. 6 and update parameters Θs of the base
MLP network.

In one iteration, following the pruning operation in [36], we
prune α percent of the parameters with the lowest magnitudes from
Θst for each task respectively, and update the corresponding binary
parameter mask Mt and contrastive mask M

′

t . Let
| |Mt | |0
| |Θs | |

denote
the sparsity of subnet st , where | |Mt | |0 is the number of parameters
that are set to 0. We set a minimal bound ϵ to control the pruning of
parameters. If the sparsity is smaller than ϵ , we continue to prune
α percent of parameters to update the parameters in Θs , until the
sparsity becomes larger than ϵ .We update the contrastive parameter
mask synchronously and all the tasks are trained alternately until
convergence.

3 EXPERIMENTS
3.1 Experimental Settings
3.1.1 Datasets. We conduct extensive experiments on three large-
scale recommendation system, i.e., Tencent, Ali-CCP and Census-
income to evaluate the effectiveness of our proposed model. The
statistics of the datasets are summarized in Table 1.
• Tencent Kandian Dataset. Tencent Kandian is one of the
largest feeds recommendation platform in China. The videos
and articles are generated from hundreds of millions of items
and recommended for more than 185 million active users
everyday. The recommendation results are generated by a
deep ranking model, which is composed of many types of
ranking objectives, such as CTR (click through rate), read
time and etc.
• Ali-CCP Dataset. This is a public dataset containing 84 mil-
lion samples extracted from Taobao’s Recommender Sys-
tem [27]. CTR and CVR (conversion rate) are two tasks in
the dataset.
• Census-income Dataset. This is collected from the 1994 cen-
sus database [2]. Task 1 aims to predict whether the income
exceeds $50K, and task 2 aims to predict this person’s marital
status. We consider the same task setting as [26].
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3.1.2 Baseline Methods. We compare CSRec with several state-of-
the-art MTL models, including:

• Single Task. Each task is optimized separately.
• Hard sharing [5]. It shares the bottom information and stack
a task specific layer to optimize each task.
• MMoE [26]. It uses multiple expert networks to extract the
different information from shared bottom, and gated network
is used to learn the task-specific information from experts.
• CGC [39]. It is similar to MMoE. Instead of sharing all the ex-
perts networks in MMoE, CGC uses task-specific experts and
an additional shared expert to address the negative transfer
problem.
• Sparse sharing [36]. It uses parameter sharing mechanism.
Each task is equipped with a parameter mask, and optimized
in parallel.
• CSRec. Our proposed contrastive sharing model with alter-
nate training strategy.

As stated in [39], learning needs to shape out deeper and deeper
semantic representations gradually in deepMTL. In order to capture
the deeper semantic representations in deepMTLmodels, we extend
our model with multiple progressive layers and make the following
comparisons.

• ML-MMoE. It stacks multiple layers to extract information
from the basic MTL learning component, i.e., the experts
networks and gating networks.
• PLE (i.e., ML-CGC) [39]. It consists of multi-level CGC to
capture the high level shared information.
• ML-CSRec. It progressively learn information from our con-
trastive sharing networks.

The above baselines cover different kinds of approaches in MTL
recommender systems. Except for the single task model, all the mod-
els are MTL models which utilize the relevant information among
tasks. Hard sharing, Sparse sharing and our proposed CSRec (ML-
CSRec) share the bottom information; but the former two methods
cannot solve the negative transfer problem, while our model can.
MMoE (ML-MMoE), CGC (PLE) are expert sharing methods that
use gated network to extract the different expert information. By
pruning the parameter and solving the negative transfer problem
by contrastive learning, our proposed CSRec achieves both high
effectiveness and efficiency. We also extend MMoE and CSRec to
ML-MMoE and ML-CSRec respectively for fair comparation with
PLE. Table 2 summarizes the properties of different methods.

3.1.3 Parameter Settings. In order to carry out fair comparisons
with the baseline methods, we employ the same experiment settings
between different compared methods where they share the same
input features, same training hyper-parameters, etc. We adopt a
three-layer MLP network with ReLU activation and hidden layer
size of [256, 192, 128] for each task in both MTL models and the
single task model in all the datasets. We implement all multi-level
MTL models as two-level models to keep the same depth of net-
works. We randomly reverse the contrastive mask, and the pruning
rate α in CSRec is set to 0.1 and the minimal sparsity ϵ is set to 0.4
in our experiments.

Table 2: Properties of methods. S: sharing bottom informa-
tion? M: Multiple progressive layers? N: alleviate the nega-
tive transfer problem? P: less parameter with pruning strat-
egy?

Model S M N P
Single Task × × × ×

Hard Sharing ✓ × × ×

MMoE ✓ × ✓ ×

CGC × × ✓ ×

Sparse Sharing ✓ × × ✓
CSRec (ours) ✓ × ✓ ✓
ML-MMoE ✓ ✓ ✓ ×

PLE × ✓ ✓ ×

ML-CSRec (ours) ✓ ✓ ✓ ✓

3.2 Main Results
There are different tasks in different datasets. In Tencent Kandian
dataset, we conduct online and offline experiments on two typical
and important tasks, i.e., CTR and ReadTime. CTR predicts whether
the current user clicks the news article item. ReadTime predicts
how long time the current user will spend to read the news article.
In Ali-CCP dataset, CTR and CVR (click conversion rate) are the
two optimized tasks. In Census-income datasets, one task termed
as T1 aims to predict whether the income exceeds $50K, and the
other task T 2 aims to predict the marital status of a person.

3.2.1 Offline Experimental Results. In offline experiments, CTR,
CVR, T1 and T2 are classification tasks, while ReadTime is a regres-
sion task, we use AUC and MSE as the evaluation metric respec-
tively. The results on Tencent Kandian, Ali-CCP and Census-income
are shown in Tables 3 and 4. We have the following observations:

(1) All the MTL models (except Hard sharing) perform better
than the single task model, showing the usefulness of using the
relevant shared information among tasks.

(2) Among MTL models, Hard sharing model performs the worst.
We find the performance improves in ReadTime but degenerates
in CTR task. This is because all tasks share the same bottom infor-
mation. The improvement of one task could hurt the other task,
showing the necessary to solve the negative transfer problem.

(3) MMoE and CGC perform better than the hard sharing model.
MMoE uses gate network to extract the useful information from
different experts. CGC works better than MMoE, since it separates
task-sharing and task-specific expert networks for each task. How-
ever, they cannot activate the hidden parameters of each expert
selectively for different tasks, leading to the efficiency problem.

(5) Sparse sharing model has a competitive performance with
CGC, and the performance on ReadTime is slightly better than our
method. By using the parameter pruning technique, the number of
parameters is significant reduced, which enables the model to be
efficiently used on large scale datasets.

(6) Globally, our approach CSRec performs the best among all
the compared methods, including the models (ML-MMoE and PLE)
with progressive layers. It has the highest efficiency with the fewest
parameters.
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Table 3: Offline experimental results on Tencent Kandian dataset. Note a slight increase in AUC/MSE at 0.001-level is known
to be a significant improvement in MTL task.

Approach AUC/ CTR MSE / ReadTime Gain/ CTR Gain/ ReadTime # Params

Single Task 0.7630 0.8159 - - 1880k
Hard Sharing 0.7622 0.8131 -0.0008 +0.0028 940k

MMoE 0.7635 0.8076 +0.0005 +0.0083 937k
CGC 0.7636 0.8063 +0.0006 +0.0096 963k

Sparse Sharing 0.7640 0.8022 +0.0010 +0.0137 654k
CSRec 0.7654 0.8008 +0.0024 +0.0151 648k

ML-MMoE 0.7637 0.8071 +0.0007 +0.0088 965k
PLE (ML-CGC) 0.7641 0.8064 +0.0011 +0.0095 998k
ML-CSRec 0.7659 0.8002 +0.0029 +0.0157 665k

Table 4: Experimental results on Ali-CCP and Census-income datasets.

Approach Ali-CCP Census-income
AUC/CTR AUC/CVR Gain/CTR Gain/CVR #Params AUC/T1 AUC/T2 Gain/T1 Gain/T2 #Params

Single Task 0.6067 0.6043 - - 186M 0.9433 0.9906 - - 348k
MMoE 0.6084 0.6041 +0.0017 -0.0002 86M 0.9477 0.9905 +0.0044 -0.0001 161k
PLE 0.6082 0.6069 +0.0015 +0.0026 98M 0.9492 0.9917 +0.0059 +0.0011 213k

Sparse Sharing 0.6091 0.6063 +0.0024 +0.0022 67M 0.9502 0.9921 +0.0069 +0.0015 113k
CSRec 0.6098 0.6074 +0.0032 +0.0031 65M 0.9531 0.9933 +0.0098 +0.0027 111k

Table 5: Online A/B test experimental results on Tencent
Kandian platform. The online business metrics significant
gains in online A/B test.

Live experiment Total View Count Total Read Time

Hard Sharing -1.01% +1.21%
MMoE -1.10% +2.20%
PLE +0.73% +1.27%

Sparse Sharing +0.60% +1.78%
CSRec +1.34% +2.34%

(7) The variant models, i.e., ML-MMoE, PLE, ML-CSRec with
progressive layers perform better than the original models, showing
the usefulness of learning the deep semantics gradually.

(8) To simplify the training process, we make comparisons with
the typical MTL methods in Ali-CCP and Census-income. The ex-
perimental results on Ali-CCP and Census-income are consistent
with Tencent Kandian dataset.

3.2.2 Online A/B Testing. We conduct online experiments on Ten-
cent Kandian platform. In online A/B testing, the recommender
system needs to select top N results from the candidate generation
stage with consideration of multiple tasks. We combine the scores
obtained from the outputs of all the tasks, with proper weights to
maximize the overall gain (i.e., the view count and read time). We
compare all the methods against the single task model (i.e., the CTR
and ReadTime tasks are trained separately) and compute the gain
of the corresponding evaluation metrics. The A/B testing results
are shown in Table 5. We can make the following observations:

(1) The hard sharing and MMoE model perform the worst – the
view count of users reduces by 1.01% and 1.10%.

(2) PLE and Sparse sharing model improve the view count and
read time of users. PLE is good at making improvements on view
count, while Sparse sharing is good at improving the read time.

(3) Our CSRec performs the best in online testing. It produces
improvements of 1.34% and 2.34% on view count and read time,
which is significant in online A/B test.

3.3 Detailed Experimental Analysis
In this section, we first make ablation experiments to demonstrate
the effectiveness of our contrastive sharing networks. Then we
further analyze the shared and conflict parameters in CSRec.

3.3.1 Ablation Study. To demonstrate the effectiveness of our pro-
posed alternate training and contrastive pruning strategies in CSRec,
we experiment with two variants, i.e., CSRec(AT) and CSRec(CL),
which only include alternate training or contrastive learning re-
spectively. We compute the improvements over the Sparse sharing
model on CTR and ReadTime or CVR in Tencent and Ali-CCP
datasets respectively. As shown in Fig. 4, both contrastive learning
and alternate training improve the model performance compared
with Sparse sharing model. The increment made by contrastive
learning is larger than alternate training. CSRec performs the best,
showing the effectiveness of combining both contrastive learning
and alternating training.

3.3.2 The Evolution of Shared Parameters. It has been shown that
the performance of MTL models highly depends on the inherent
task relatedness [10, 26], hence MTL models should use all and
only the relevant information from other tasks. In this section, we
visualize the shared parameters along with the training iterations to
better understand why CSRec can work better than Sparse sharing
model. We define the Sharing Ratio (SR) among different tasks
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Figure 4: The improvements of variant models over Sparse
sharing model on Tencent and Ali-CCP. AT and CL repre-
sent alternate training and contrastive learning strategies.

as the count of sharing parameters divided by the total count of
parameters in base MLP network. SR reflects the similarity among
different tasks. As shown in Fig 5 (a), the SR of CSRec is larger than
that of Sparse sharing model during MTL training iterations. This
indicates that CSRec can learn more relevant information among
tasks.

(a) (b)

Figure 5: The ratio of shared parameters (a) and conflict pa-
rameters (b) in Sparse sharing and CSRec during MTL train-
ing iterations on Tencent Kandian dataset.

3.3.3 The Evolution of Conflict Parameters. During optimization
process, the parameter conflict results in negative transfer of infor-
mation. That is to say, the performance improvement on one task
is at the cost of the degeneration on other tasks. The less conflict
parameters, the better performance. We analyze the Conflict Ratio
(CR) among different tasks, which is defined as the count of conflict
parameters during gradient optimization divided by the count of
sharing parameters in base MLP network. As shown in Fig 5 (b),
we find that the number of conflict parameter in CSRec is much
smaller than Sparse sharing model. Sparse sharing model cannot
deal with the parameter conflict problem during MTL training iter-
ations. While by using contrastive learning, each mask in CSRec is
able to choose the proper parameters, which reduces the conflict
probability of parameters. CSRec maximizes the ability to learn
from the relevant information by more shared parameters and min-
imize the negative transfer by generating less conflict parameters,
resulting in a significant improvement in performance.

3.3.4 Visualizing the Parameter Distribution. We further make com-
parisons of the parameter distribution in Sparse sharing model and

Table 6: The model performance of CSRec with different
contrastive strategies on Tencent Kandian dataset.

Contrastive strategies Total Gain Converge time

Random reverse +0.0175 28h
Shared Random reverse +0.0184 28h

Conflicted Random reverse +0.0188 51h

CSRec on Tencent Kandian dataset. We compute the ratio of task-
specific parameters and sharing parameters on different kinds of
features. The visualization of parameters on some randomly se-
lected features are shown in Fig 6. We can see that CSRec shares
more information than Sparse sharing model. In Sparse sharing
model, CTR task uses more parameters than ReadTime task, which
may reduce the performance in ReadTime task due to the nega-
tive transfer problem. The parameters occupation rate in CSRec is
evenly distributed, which may maximize the performance of each
task.

CTR Share ReadTime

CTR Share ReadTime

a) Sparse Sharing

b) Contrastive Sharing

Figure 6: The percentage of task-specific and shared pa-
rameters in Sparse sharing and CSRec on Tencent Kandian
dataset.

3.3.5 Comparisons of different contrastive strategy. Considering
different contrastive strategies may have different impact on the
predictive task [6], we compare three different contrastive strate-
gies, i.e., random reverse, shared random reverse and conflicted
random reverse, to generate the contrastive mask.
• Random reverse: the contrastive mask is generated by ran-
domly sampling on reversed parameters mask for each task.
• Shared random reverse: the contrastive mask is generated
by randomly sampling on the reversed parameters mask, in
which only the shared parameters are reversed.
• Conflicted random reverse: the contrastive mask is generated
by randomly sampling on the reversed parameters mask, in
which the conflicted parameters that had updated in the
latest iteration are reversed.

We calculate the performance gain of CTR and ReadTime tasks
of CSRec in Tencent dataset, as shown in Table 6, the performance
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of our model with different contrastive strategies are different. The
conflicted random reverse strategy achieves the best results because
much attention is paid to the conflict parameters, but it is time-
consuming due to the extra computations for judging the conflicts
of parameters. The shared random reverse strategy achieves the
best performance by trading off both effectiveness and efficiency.

4 RELATEDWORK
4.1 Deep Multi-Task Learning
4.1.1 Hard Parameter Sharing. Deep Multi-Task Learning (MTL)
is an active research topic in recommender systems [3, 4, 7, 23,
24, 42, 44]. Hard parameter sharing [7, 20] is a classic multi-task
learning approach and widely used in the recent industrial large-
scale recommender systems [13, 31]. The key idea of hard parameter
sharing is that the bottom-layer parameters are shared by all tasks
while the top layer parameters are independently trained for specific
tasks. Hard parameter sharing has been proved to be effective for
optimization on multiple correlated tasks. However, it would have
negative impacts on the performance of some tasks that are weakly
correlated, since the idea of fully sharing bottom-layer parameters
may bring inherent conflicts to those tasks. This problem limits the
performance of hard parameter sharing in applications.

4.1.2 Soft Parameter Sharing. The soft parameter sharing [10, 29]
does not force each task to share all network parameters. In contrast,
each task is optimized by a separate model with exclusive network
parameters. Additionally, each model can access the information
learned from other models. Compared to the hard parameter shar-
ing, soft parameter sharing does not need to take task correlation
into consideration. Therefore, it performs better for the simultane-
ous optimizations of the weakly related or unrelated tasks. However,
it takes a large amount of time for soft parameter sharing to carry
out online inference and a large space to store more network pa-
rameters with multiple models. Hence, it is unpractical in industrial
large-scale multi-task optimization.

4.1.3 Expert Parameter Sharing. Some studies [11, 16, 35] proposed
a mixture-of-expert (MoE) network that combines multiple experts
with a gating activation. MMoE [26] is further proposed to use a
separate gating activation for a specific task. MMoE can learn from
multiple experts with a single model instead of separate models
for each task. Besides, several gating-based multi-task learning
models [25, 39, 43] are proposed to better learn task relationships.
SNR model [25] modularizes sharing networks into multiple sub-
networks and control the connections of sub-networks with learn-
able latent variables to achieve flexible parameter sharing. PLE [39]
is proposed recently to better handle the seesaw phenomenon be-
tween tasks by separating task-sharing and task-specific expert
networks explicitly for each task.

4.1.4 Sparse Sharing. By utilizing the AutoML approaches to find
a good network structure [46], sparse sharing model [25, 36, 40]
goes one step further to do parameter-wise sharing to allow neural
parameters of the sharing network be partially shared between
different tasks. Based on the IMP hypothesis [12], it proposes an
efficient approach to extract subnets for each task automatically.
The obtained subnets are overlapped and trained in parallel first

to decide what parameters to share and what parameters to be
kept private in task, and then optimize the multi-task loss with
the sharing schema fixed. However, sparse sharing model needs
a two-turn training procedure, which is not efficient. At the same
time, the sharing schema learned in the first turn for each task
separately might not be suitable for the MTL training situation
in the second turn. Moreover, it ignores the parameter gradient
update conflict for shared parameters during MTL training, and
thus cannot achieve the best performance. Our proposed CSRec
utilizes contrastive learning with alternating training process to
address the parameter conflict problem.

4.2 Contrastive Learning
Contrastive Learning techniques use a self-supervised learning
framework recently [1, 17, 18, 22, 28, 32]. With Contrastive Learn-
ing, the probabilities of ground-truth pairs are indirectly ensured by
the positive constraint, while the negative constraint suppresses the
probabilities of mismatched pairs, forcing the target model to learn
from distinctiveness [8]. Contrastive Learning has been widely ap-
plied in several domains, especially computer vision, and has shown
good results in many tasks [6, 15, 30]. CPC [30] demonstrated Con-
trastive Predictive Coding can learn good representations, leading
to strong performances in different domains including speech, im-
age and text. Besides, contrastive Learning has also been introduced
to improve the quality of recommender systems [21, 34, 41, 45].
CLRec [45] proposes a contrastive learning paradigm to alleviate
exposure bias in candidate generation stage of large-scale recom-
mender systems. CP4Rec [41] utilizes the contrastive pre-training
framework to extract meaningful user patterns and further encode
the user representation effectively. In contrastive learning, design-
ing suitable contrastive strategy plays a critical role in predictive
tasks [6]. For example, the spatial/geometric transformation [9] and
appearance transformation [38] are two widely used contrastive
strategies in visual representation learning. In this paper, we apply
contrastive learning into multi-task recommender system, which
had not been well investigated in multi-task learning. We use con-
trastive learning to solve the conflict problem of shared parameters.
Our study suggests a new perspective to address the negative trans-
fer challenge in multi-task learning.

5 CONCLUSION
We proposed a novel contrastive sharing multi-task learning model
CSRec, which is an effective and efficient model for recommenda-
tion. It has been successfully incorporated into a real-world large-
scale industrial recommendation platform, i.e., Tencent Kandian.
By evaluating the contribution of parameters by contrastive learn-
ing, we addressed the parameter conflict problem in MTL, which
alleviates the negative transfer of irrelevant information among
tasks. In the future, we will explore different types of contrastive
masks to improve the model performance.
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